Chapitre 3

Nombres complexes

Mathématiques PTSI

Lycée Déodat de Séverac

Plan

- Définition et opérations algébriques
 - Définition et propriétés algébriques
 - Conjugué d'un nombre complexe
 - Module d'un nombre complexe
 - Géométrie et nombres complexes
- 2 Forme trigonométrique et exponentielle complexe
- Résolution d'équations complexes
- 4 Utilisation des nombres complexes en trigonométrie

Définition :

- 1. On appelle nombre complexe tout nombre de la forme z=a+ib avec $a\in\mathbb{R},\ b\in\mathbb{R}$ et i tel que $i^2=-1$ (c'est à dire i solution de l'équation $x^2=-1$). On note $\mathbb C$ l'ensemble des nombres complexes ;
- 2. Si $z=a+ib\in\mathbb{C}$, on appelle : a la partie réelle de z, notée $\mathcal{R}e(z)$, b la partie imaginaire de z, notée $\mathcal{I}m(z)$;
- 3. L'écriture z=a+ib est appelée forme algébrique de z ;
- 4. Deux nombres complexes sont égaux si leurs parties réelles ET imaginaires sont égales.

> opérations algébriques :

On étend naturellement (associativité, distributivité) les opérations algébriques réelles. Soient z=a+ib et $z^\prime=a^\prime+ib^\prime$ deux nombres complexes, on définit :

(a) la somme
$$z + z' = (a + a') + i(b + b');$$

(b) le produit
$$zz' = (a+ib)(a'+ib')$$

= $aa' + aib' + iba' + (ib) \times (ib')$
= $aa' + i(ab' + a'b) - bb'$
= $(aa' - bb') + i(ab' + a'b)$;

(c) l'inverse (pour
$$z \neq 0$$
)
$$\frac{1}{z} = \frac{1}{a+ib}$$
$$= \frac{1 \times (a-ib)}{(a+ib)(a-ib)}$$
$$= \frac{a-ib}{a^2+b^2}$$
$$= \frac{a}{a^2+b^2} - i\frac{b}{a^2+b^2}$$

On vérifie par ailleurs que la somme et le produit sont encore commutatifs : z + z' = z' + z et zz' = z'z.

Définition :

Pour $z=a+ib\in\mathbb{C}$, on appelle conjugué de z, et on note \overline{z} , le nombre complexe : $\overline{z}=a-ib$.

Proposition (propriétés de la conjugaison)

Soit z et z' deux nombres complexes. Alors :

$$z + \overline{z} = 2\mathcal{R}e(z)$$

$$z - \overline{z} = 2i\mathcal{I}m(z)$$

$$\overline{z + z'} = \overline{z} + \overline{z'}$$

$$\overline{z} = z$$

$$\overline{z} = \overline{z}$$

$$\overline{z} = z$$

$$\overline{z} = z$$

Définition:

Pour z=a+ib, on appelle module de z le nombre réel positif : $|z|=\sqrt{a^2+b^2}$.

Proposition (propriétés du module)

Soit z et z' deux nombres complexes. Alors :

•
$$|z| = 0 \Leftrightarrow z = 0$$

 $|\overline{z}| = |z|$
 $z\overline{z} = |z|^2$

$$|zz'| = |z||z'$$

$$\left|\frac{1}{z}\right| = \frac{1}{|z|}$$

$$\left|\frac{z}{z'}\right| = \frac{|z|}{|z'|}$$

$$|zz'| = |z||z'|$$

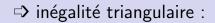
$$\left|\frac{1}{z}\right| = \frac{1}{|z|}$$

$$\left|\frac{z}{z}\right| - \frac{|z|}{|z|}$$

$$||z| - \frac{|z|}{|z|}$$

Exercice

Calculer le module de $(1+2i)^6$.



Proposition

Soient z et z' deux nombres complexes. Alors $|z+z'| \leq |z|+|z'|\,;$ $||z|-|z'|| \leq |z-z'|.$

Définition:

- À tout nombre complexe : z=a+ib, on associe le point du plan M de coordonnées $(a;\ b)$ dans le repère usuel. On dit que M est l'image de z et on note ce point M(z).
- A tout point du plan M de coordonnées $(a;\ b)$ on associe le nombre complexe z=a+ib. On dit que z est l'affixe du point M.
- A tout vecteur \overrightarrow{u} du plan de coordonnées $(a;\ b)$, on associe le nombre complexe z=a+ib. On dit que z est l'affixe de \overrightarrow{u} .

L'ensemble $\mathbb C$ s'identifie alors au plan muni du repère orthonormal direct $(O,\overrightarrow{i},\overrightarrow{j})$, appelé alors *plan complexe*.

Proposition

Soient \overrightarrow{u} , \overrightarrow{v} deux vecteurs du plan d'affixes respectives u,v. Pour tous réels $\lambda \in \mathbb{R}, \mu \in \mathbb{R}$ le vecteur $\lambda \overrightarrow{u} + \mu \overrightarrow{v}$ a pour affixe $\lambda u + \mu v$.

Exercice

Résoudre géométriquement l'équation |z - 1| = |z + i|.

Proposition

• Le cercle de centre $A(z_A)$ et de rayon r>0 est :

$$\{M(z) \in \mathbb{C}/|z - z_A| = r\}.$$

Le disque ouvert de centre $A(z_A)$ et de rayon r>0 est :

$$\{M(z) \in \mathbb{C}/|z - z_A| < r\};$$

Le disque fermé de centre $A(z_A)$ et de rayon r>0 est :

$$\{M(z) \in \mathbb{C}/|z - z_A| \le r\}.$$

Exercice

Résoudre géométriquement $\begin{cases} |z+1| \le 1 \\ |z-1| < 1 \end{cases}$

Plan

- Définition et opérations algébriques
- Porme trigonométrique et exponentielle complexe
 - La notation $e^{i\theta}$
 - Forme trigonométrique et argument d'un nombre complexe
 - Formules d'Euler et de De Moivre
 - Exponentielle d'un nombre complexe
 - Application des nombres complexes à la géométrie du plan, partie 2.
- 3 Résolution d'équations complexes
- 4 Utilisation des nombres complexes en trigonométrie

⇒ définitions et premières propriétés :

Définition:

Pour $\theta \in \mathbb{R}$, on note $e^{i\theta}$ le nombre complexe $e^{i\theta} = \cos(\theta) + i\sin(\theta)$.

Proposition

Pour θ et θ' deux nombres réels, nous avons : $e^{i(\theta+\theta')}=e^{i\theta}e^{i\theta'}$.

conséquences :

Pour $\theta \in \mathbb{R}$ et $\theta' \in \mathbb{R}$,

- $(e^{i\theta})^{-1} = e^{-i\theta};$
- $\frac{e^{i\theta}}{e^{i\theta'}} = e^{i(\theta \theta')};$
- $\forall n \in \mathbb{Z}, (e^{i\theta})^n = e^{in\theta}.$

Proposition

- ① Tout nombre complexe $z \neq 0$ peut s'écrire sous la forme $z = r(\cos(\theta) + i\sin(\theta)) = re^{i\theta}$, avec r > 0 et $\theta \in \mathbb{R}$;
- **9** De plus, une telle écriture est unique à 2π près, c'est à dire, pour $r_1 > 0$, $r_2 > 0$, θ_1 et θ_2 deux réels, nous avons :

$$z = r_1 e^{i\theta_1} = r_2 e^{i\theta_2} \Leftrightarrow \begin{cases} r_1 = r_2 \\ \theta_1 = \theta_2 \ [2\pi] \end{cases}.$$

Définition:

- $\textbf{9} \ \, \text{Pour} \,\, z \neq 0, \, \text{l'écriture} \,\, z = r(\cos(\theta) + i\sin(\theta)) = re^{i\theta} \text{avec} \,\, r > 0 \,\, \text{et} \\ \theta \in \mathbb{R} \,\, \text{est appelée forme trigonométrique du nombre complexe} \,\, z \,;$
- 2 Le réel θ de l'écriture ci-dessus est appelé argument de z.

On dit **UN** argument, et non pas **L'** argument.

Proposition (propriétés de l'argument)

Soient z et z' deux nombres complexes non nuls. Alors :

- $arg(z^{-1}) = -arg(z) [2\pi];$

⇒ les formules d'Euler :

Proposition

Pour $heta \in \mathbb{R}$, nous avons :

$$\cos(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2}$$
$$\sin(\theta) = \frac{e^{i\theta} - e^{-i\theta}}{2i}$$

⇒ <u>la formule de De Moivre :</u>

Proposition

Pour $\theta\in\mathbb{R}$ et $n\in\mathbb{Z}$, nous avons : $\left(e^{i\theta}\right)^n=e^{in\theta}$, ce qui s'écrit encore :

$$(\cos(\theta) + i\sin(\theta))^n = \cos(n\theta) + i\sin(n\theta).$$

Définition:

Si z=a+ib est la forme algébrique de z, on note $e^z=e^a\times e^{ib}$, où e^a reprèsente l'exponentielle réelle.

Proposition (propriétés algébriques)

Pour z et z' deux nombres complexes. Alors :

- $e^{z+z'} = e^z e^{z'};$ $(e^z)^{-1} = e^{-z};$ $e^{z-z'} = \frac{e^z}{e^{z'}};$ $\overline{e^z} = e^{\overline{z}}.$

Proposition

Soient $(z,z')\in\mathbb{C}^2$.

$$\exp(z) = \exp(z') \Leftrightarrow \exists k \in \mathbb{Z}/z' = z + 2\pi ki$$

Exercice

Résoudre l'équation $e^z=2i$, puis $e^{2z}=1+i\sqrt{3}$.

Proposition

Soient $A(z_A); B(z_B); C(z_C)$ et $D(z_D)$ quatre points tels que $z_B \neq z_A$ et $z_C \neq z_D$. Alors, un argument du nombre complexe $\frac{z_D - z_C}{z_B - z_A}$ est une mesure en radians de l'angle orienté $(\overrightarrow{AB}; \overrightarrow{CD})$.

🖔 conséquences :

(1) Trois points distincts A, B, C sont alignés si et seulement si

$$(\overrightarrow{AB}; \overrightarrow{AC}) = 0[\pi] \Leftrightarrow \arg(\frac{z_C - z_A}{z_B - z_A}) = 0[\pi] \Leftrightarrow \frac{z_C - z_A}{z_B - z_A} \in \mathbb{R}.$$

(2) Prenons A,B,C,D distincts. Les droites (AB) et (CD) sont orthogonales si et seulement si $\arg(\frac{z_D-z_C}{z_B-z_A})=\frac{\pi}{2}[\pi]\Leftrightarrow \frac{z_D-z_C}{z_B-z_A}$ est imaginaire pur.

Exercice

À quelle condition sur $z\in\mathbb{C}$ les points A(1), M(z) et $N(z^2)$ forment-ils un triangle restangle en A(z)

⇒ Expressions complexes de transformations planes usuelles :

Définition :

Si O est l'origine du repère, on appelle :

- translation de vecteur \overrightarrow{u} , et on note t, l'application qui à tout point M du plan associe le point : $t(M) = M + \overrightarrow{u}$;
- ② rotation de centre O et d'angle θ , et on note r, l'application qui à tout point M associe le point r(M) tel que : $\begin{cases} ||Or(M)|| = ||\overline{OM}|| \\ (\overline{OM}, \overline{Or(M)}) = \theta |[2\pi]| \end{cases}$;
- \bullet homothétie de centre O et de rapport $\lambda \in \mathbb{R}^*$, et on note h, l'application qui à tout point M du plan associe le point h(M) tel que $\overrightarrow{Oh(M)} = \lambda \overrightarrow{OM}$

⇒ Expressions complexes de transformations planes usuelles :

Proposition (expression en affixes complexes)

- Soit t la translation de vecteur \overrightarrow{u} . Si on note z l'affixe de M et z'l'affixe de t(M), alors : z'=z+b où $b\in\mathbb{C}$ est l'affixe complexe de
- ② Soit r la rotation de centre O et d'angle θ . Si on note z l'affixe de Met z' l'affixe de r(M) , alors : $z' = e^{i\theta}z$.
- Soient $\lambda \in \mathbb{R}^*$ et h l'homothétie de centre O et de rapport λ . Si on note z l'affixe de M et z' l'affixe de h(M) , alors : $z' = \lambda z$.

Exercice

Identifier les transformations du plan d'écritures complexes suivantes :

(a)
$$f(z) = z + i - 4$$
; (b) $f(z) = -iz$; (c) $f(z) = -\frac{1}{2}z$; (d) $f(z) = -iz$, $j = e^{2i\pi/3}$.

Plan

- Définition et opérations algébriques
- 2 Forme trigonométrique et exponentielle complexe
- Résolution d'équations complexes
 - Racine carrée d'un nombre complexe
 - Trinôme du second degré à coefficients complexes
 - Racines n-èmes de l'unité
 - Racine nième d'un nombre complexe quelconque
- 4 Utilisation des nombres complexes en trigonométrie

Définition:

On appelle racine carrée du nombre complexe Z tout nombre $z\in\mathbb{C}$ tel que $z^2=Z.$

Mathématiques PTSI (Lycée Déodat de Séverac)

35 / 52

Il est possible d'expliciter les racines carrées de n'importe quel nombre complexe en procédant de la façon suivante :

Si l'on pose Z=a+ib, nous cherchons donc tous les z=x+iy tels que $z^2=Z.$ La résolution se fait alors en trois étapes :

• On identifie les formes algébriques : $z^2 = (x^2 - y^2) + 2ixy$. Ainsi :

$$z^2 = Z \Leftrightarrow \left\{ \begin{array}{l} x^2 - y^2 = a \\ 2xy = b \end{array} \right. ;$$

• $z^2 = Z \Rightarrow |z^2| = |Z|$, ce qui donne la relation supplémentaire $x^2 + y^2 = \sqrt{a^2 + b^2}$:

•
$$z^2 = Z$$
 \Leftrightarrow
$$\begin{cases} z^2 = Z \\ |z^2| = |Z| \\ x^2 - y^2 = a \\ x^2 + y^2 = \sqrt{a^2 + b^2} \\ 2xy = b \end{cases}$$
 \Leftrightarrow
$$\begin{cases} x^2 = \frac{\sqrt{a^2 + b^2} + a}{2} \\ y^2 = \frac{\sqrt{a^2 + b^2} - a}{2} \\ 2xy = b \end{cases}$$

Exercice

Résoudre l'équation $z^2 = 3 - 4i$.

Résolution :

Proposition

On note $\Delta = b^2 - 4ac \in \mathbb{C}$ le discriminant du trinôme $T = az^2 + bz + c$.

- 1. Si $\Delta=0$, l'équation $az^2+bz+c=0$ admet une unique solution $z_0=-\frac{b}{2a}$;
 2. Si $\Delta\neq 0$, l'équation $az^2+bz+c=0$ admet deux solutions distinctes : $z_1=\frac{-b+w}{2a}$ et $z_2=\frac{-b-w}{2a}$, où w est une racine carrée de Δ .

Exercice

Résoudre les équations suivantes : $z^2 + \sqrt{3}z + i = 0$, $z^2 - 2z + 1 - 2i = 0$.

Lorsque les coefficients du trinôme sont complexes, alors les solutions complexes ne sont pas forcément conjuguées!

relations entre coefficients et solutions :

Proposition

- ① Si z_1 et z_2 sont les solutions de l'équation (non necessairement distinctes) $az^2 + bz + c = 0$, alors $z_1 + z_2 = \frac{-b}{a}$ et $z_1z_2 = \frac{c}{a}$;
- **Q** Réciproquement, si l'on connaît la somme S et le produit P de deux nombres complexes z_1 et z_2 , alors z_1 et z_2 sont solutions de l'équation : $\boxed{z^2 Sz + P = 0}$

Exercice

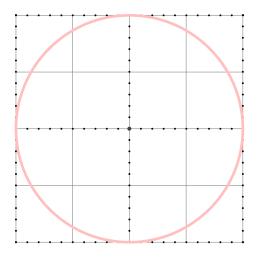
Résoudre le système
$$\left\{ egin{array}{l} z_1+z_2=1 \\ z_1z_2=rac{1}{2} \end{array}
ight.$$

Définition:

Pour $n\in\mathbb{N}^*$, on appelle racine n-ème de l'unité toute solution de l'équation $z^n=1.$ On note \mathbb{U}_n l'ensemble des racines n-èmes de l'unité.

Proposition

si $w = e^{2i\pi/n}$, alors $\mathbb{U}_n = \{1; \ w; \ w^2; \ w^3; \dots; w^{n-1}\}.$



Proposition (somme des racines n-èmes de l'unité)

Pour $n\geq 2$, la somme des racines n-èmes de l'unité est nulle, c'est à dire :

$$1 + w + w^2 + \ldots + w^{n-1} = 0;$$

avec $w=e^{2i\pi/n}$

Définition:

Soit $n\in\mathbb{N}^*$ et $z\in\mathbb{C}$. On appelle racine n-ième de z tout nombre $\omega\in\mathbb{C}$ tel que $\omega^n=z$.

Proposition

Soit $n\in\mathbb{N}^*$. Tout nombre complexe non nul admet n racines n-ièmes distinctes. Plus précidément, si w est tel que $w^n=Z$, avec $Z=re^{i\theta}$ $(Z\neq 0)$, alors :

$$w^n = Z \Leftrightarrow w = r^{1/n} e^{i(\theta + 2k\pi)/n}$$
, avec $k \in [0; n-1]$.

Exercice

Résoudre : (a) $z^5 = 8$; (b) $z^3 = 1 + i$.

Plan

- Définition et opérations algébriques
- 2 Forme trigonométrique et exponentielle complexe
- Résolution d'équations complexes
- 4 Utilisation des nombres complexes en trigonométrie
 - Linéarisation
 - Délinéarisation
 - Factorisation de $a\cos(x) + b\sin(x)$.

Principe : Se débarrasser des facteurs dans une expression trigonométrique. On utilise pour ceci les formules d'Euler.

Exercice

Linéariser $\sin^3(x)$.

Principe : Exprimer $\cos(px)$ et $\sin(px)$ par des puissances de $\cos(x)$ et $\sin(x)$. On utilise ici la formule de De Moivre.

Exercice

Délinéariser cos(3x).

On suppose a et b non nuls simultanément.

Proposition

Il existe r>0 et $\theta\in\mathbb{R}$ tels que : $\forall x\in\mathbb{R},\ a\cos(x)+b\sin(x)=r\cos(x-\theta)$.

Exercice

Résoudre l'équation $\sqrt{3}\cos(x) + \sin(x) = 1$.