Chapitre 6

Nombres complexes : compléments

Mathématiques PTSI

Lycée Déodat de Séverac

À l'issue de ce chapitre vous devez savoir :

- Traduire et résoudre des problèmes de géométrie plane avec des nombres complexes;
- Résoudre une équation de degré deux à coefficients complexes;
- Connaître les racines nèmes de l'unité et les utiliser pour résoudre des éguations complexes.

Plan

- Nombres complexes et géométrie
 - Lien nombres complexes/vecteurs
 - Inégalité triangulaire
 - Caractérisations de l'alignement et de l'orthogonalité
 - Expressions complexes de transformations planes usuelles
 - Les exercices du jour
- 2 Résolution d'équations complexes

Définition 1:

- lacktriangle À tout nombre complexe : z=a+ib, on associe le point du plan Mde coordonnées (a; b) dans le repère usuel. On dit que M est l'image de z et on note ce point M(z).
- ullet À tout point du plan M de coordonnées (a,b) on associe le nombre complexe z = a + ib. On dit que z est l'affixe du point M.
- \bullet À tout vecteur \overrightarrow{u} du plan de coordonnées (a;b), on associe le nombre complexe z = a + ib. On dit que z est l'affixe de \overrightarrow{u} .

L'ensemble $\mathbb C$ s'identifie alors au plan muni du repère orthonormal direct $(O, \overrightarrow{i}, \overrightarrow{j})$, appelé alors plan complexe.

Proposition 1

Soient \overrightarrow{u} , \overrightarrow{v} deux vecteurs du plan d'affixes respectives u,v. Pour tous réels $\lambda \in \mathbb{R}, \mu \in \mathbb{R}$ le vecteur $\lambda \overrightarrow{u} + \mu \overrightarrow{v}$ a pour affixe $\lambda u + \mu v$.

conséquence :

Soit A d'affixe z_A et B d'affixe z_B dans le plan usuel. Alors :

- La somme: $z_A + z_B$ est l'affixe du point M défini par $\overrightarrow{OM} = \overrightarrow{OA} + \overrightarrow{OB}$
- La Différence : $z_B z_A$ est l'affixe du vecteur \overrightarrow{AB}
- Le module : $AB = |z_B z_A|$.

Proposition 2

- Le cercle de centre $A(z_A)$ et de rayon r>0 est $\{M(z) / |z - z_A| = r\}.$
- Le disque ouvert de centre $A(z_A)$ et de rayon r>0 est $\{M(z) / |z - z_A| < r\}.$
- Le disque fermé de centre $A(z_A)$ et de rayon r > 0 est $\{M(z) / |z - z_A| < r\}.$

Proposition 3

Soient z et z' deux nombres complexes. Alors : $|z+z'| \leq |z|+|z'| ;$ $||z|-|z'|| \leq |z-z'|.$

REMARQUE : Cas d'égalité : |z+z'|=|z|+|z'| si et seulement si $\exists \lambda \in \mathbb{R}_+$ tel que : $z' = \lambda z$.

Soit M un point du plan d'affixe z dont une forme trigonométrique est $re^{i\theta}$. On a déjà vu que OM=|z|=r et $(\overrightarrow{i},\overrightarrow{OM})=\theta$ $[2\pi]$. Donc un argument de z est une mesure de l'angle $(\overrightarrow{i},\overrightarrow{OM})$.

Proposition 4

Soient $A(z_A); B(z_B); C(z_C)$ et $D(z_D)$ quatre points tels que $z_B \neq z_A$ Alors, un argument du nombre complexe $\frac{z_D - z_C}{z_B - z_A}$ est une mesure en radians de l'angle orienté $(\overrightarrow{AB}, \overrightarrow{CD})$.

conséquences :

- ① Trois points distincts A, B, C sont alignés si et seulement si : $(\overrightarrow{AB}; \overrightarrow{AC}) = 0[\pi] \Leftrightarrow arg(\frac{z_C - z_A}{z_D - z_A}) = 0[\pi] \Leftrightarrow \frac{z_C - z_A}{z_D - z_A} \in \mathbb{R}.$
- Prenons A, B, C, D distincts. Les droites (AB) et (CD) sont orthogonales si et seulement si : $arg(\frac{z_D-z_C}{z_B-z_A})=\frac{\pi}{2}[\pi]\Leftrightarrow \frac{z_D-z_C}{z_B-z_A}$ est imaginaire pur.

REMARQUE : On obtient en fait le même résultat avec trois points distincts (en raisonnant exactement de la même façon) : Les droites (AB) et (AC) sont orthogonales si et seulement si $\frac{z_C - z_A}{z_B - z_A}$ est imaginaire pur.

Définition 2:

Si O est l'origine du repère, on appelle :

- translation de vecteur \overrightarrow{u} , et on note t, l'application qui à tout point M du plan associe le point : t(M) tel que : $\overrightarrow{Mt(M)} = \overrightarrow{u}$:
- ② rotation de centre O et d'angle θ , et on note r, l'application qui à tout point M associe le point r(M) tel que : $\begin{cases} ||\overrightarrow{Or(M)}|| = ||\overrightarrow{OM}|| \\ (\overrightarrow{OM} \ \overrightarrow{Or(M)}) = \theta \ [2\pi] \end{cases}$
- \bullet homothétie de centre O et de rapport $\lambda \in \mathbb{R}^*$, et on note h, l'application qui à tout point M du plan associe le point h(M) tel que $\overrightarrow{Oh(M)} = \lambda \overrightarrow{OM}$.

Proposition 5(expression en affixes complexes)

- Soit t la translation de vecteur \overrightarrow{u} . Si on note z l'affixe de M et z'l'affixe de t(M) , alors : z'=z+b où $b\in\mathbb{C}$ est l'affixe complexe de
- ② Soit r la rotation de centre O et d'angle θ . Si on note z l'affixe de M et z' l'affixe de r(M) , alors : $z' = e^{i\theta}z$.
- Soient $\lambda \in \mathbb{R}^*$ et h l'homothétie de centre O et de rapport λ . Si on note z l'affixe de M et z' l'affixe de h(M) , alors : $z' = \lambda z$.

Exercice 1

[-M1-] Identifier les transformations du plan d'écritures complexes suivantes :

(a)
$$f(z) = z + i - 4;$$
 (b) $f(z) = -iz;$ (c) $f(z) = -\frac{1}{2}z;$ (d) $f(z) = -jz, j = e^{2i\pi/3}.$

Exercice 2

[-M1-] Résoudre géométriquement l'équation |z-1| = |z+i|.

Exercice 3

[-M1-] Soient A et B deux points du plan d'affixe z_A et z_B . Quelle est l'affixe du milieu, noté I, de [AB]?

[-M1-] Résoudre géométriquement
$$\left\{ egin{array}{l} |z+1| \leq 1 \\ |z-1| \leq 1 \end{array}
ight.$$

Exercice 5

[-M1-] Soient A(1+i), B(3+4i) et C(-2+3i). Quelle est la nature du triangle ABC?

Exercice 6

- [-M1-] Donner l'ensemble des nombres complexes $z\in\mathbb{C}$ tels que : $A(1); M(z); M'(z^2) \text{ sont alignés}.$ $A(1); M(z); M'(z^2) \text{ forment un triangle rectangle en } A.$

Plan

- 1 Nombres complexes et géométrie
- Résolution d'équations complexes
 - Racine carrée d'un nombre complexe
 - Trinôme du second degré à coefficients complexes
 - Racines n-èmes de l'unité
 - Racines nième d'un nombre complexe quelconque
 - Les exercices du jour

Définition 3:

On appelle racine carrée du nombre complexe Z tout nombre $z\in\mathbb{C}$ tel que $z^2=Z.$

On n'écrira surtout pas $i=\sqrt{-1}.$ Le symbole $\sqrt{\ }$ est exclusivement réservé aux **réels positifs**.

Il est possible d'expliciter les racines carrées de n'importe quel nombre complexe en procédant de la façon suivante :

Si l'on pose Z=a+ib, nous cherchons donc tous les z=x+iy tels que $z^2=Z$. La résolution se fait alors en trois étapes :

• On identifie les formes algébriques : $z^2 = (x^2 - y^2) + 2ixy$.

Ainsi :
$$z^2 = Z \Leftrightarrow \left\{ \begin{array}{l} x^2 - y^2 = a \\ 2xy = b \end{array} \right.$$
;

• $z^2=Z\Rightarrow |z^2|=|Z|$, ce qui donne la relation supplémentaire $x^2+y^2=\sqrt{a^2+b^2}$;

•
$$z^2 = Z \Leftrightarrow \begin{cases} z^2 = Z \\ |z^2| = |Z| \end{cases} \Leftrightarrow \begin{cases} x^2 - y^2 = a \\ x^2 + y^2 = \sqrt{a^2 + b^2} \end{cases} \Leftrightarrow \begin{cases} x^2 = \frac{\sqrt{a^2 + b^2} + a}{2xy = b} \end{cases} \Leftrightarrow \begin{cases} x^2 = \frac{\sqrt{a^2 + b^2} - a}{2} \\ 2xy = b \end{cases}$$

REMARQUE : Les deux solutions complexes de l'équation $z^2=Z$ sont opposées. En effet, si $w^2=Z$, alors $(-w)^2=w^2=Z$.

⇒ Résolution :

Proposition 6

On note $\Delta=b^2-4ac\in\mathbb{C}$ le discriminant du trinôme $T=az^2+bz+c$ $(a\neq 0).$ Alors

- Si $\Delta=0$, l'équation $az^2+bz+c=0$ admet une unique solution $z_0=-\frac{b}{2a}$;
- Si $\Delta \neq 0$, l'équation $az^2 + bz + c = 0$ admet deux solutions distinctes : $z_1 = \frac{-b+w}{2a}$ et $z_2 = \frac{-b-w}{2a}$, où w est une racine carrée de Δ .

Lorsque les coefficients du trinôme sont complexes, alors les solutions complexes ne sont pas forcément conjuguées !

Relations entre coefficients et solutions :

Proposition 7

• Si z_1 et z_2 sont les solutions de l'équation (non necessairement

distinctes)
$$az^2 + bz + c = 0$$
, alors $z_1 + z_2 = \frac{-b}{a}$ et $z_1z_2 = \frac{c}{a}$;

$$z_1 + z_2 = \frac{-b}{a} \text{ et } z_1 z_2 = \frac{c}{a}$$
;

- $oldsymbol{Q}$ Réciproquement, si l'on connaît la somme S et le produit P de deux nombres complexes z_1 et z_2 , alors z_1 et z_2 sont solutions de l'équation : $z^2 - Sz + P = 0$.

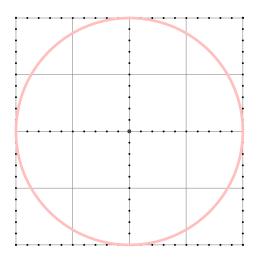
Définition 4:

Pour $n\in\mathbb{N}^*$, on appelle racine n-èmes de l'unité toute solution de l'équation $z^n=1.$ On note \mathbb{U}_n , l'ensemble des racines n-èmes de l'unité.

 $\mathsf{REMARQUE}: \ \mathbb{U}_n \subset \mathbb{U}$

Proposition 8

si
$$z_1=e^{2i\pi/n}$$
, alors $\mathbb{U}_n=\{z_1;\ z_1^2;\ z_1^3;\ldots;z_1^{n-1};\ \underbrace{1}_{z_1^n}\}.$



REMARQUES:

- etc...

Proposition 9(somme des racines n-èmes de l'unité)

Pour $n \geq 2$, la somme des racines n-èmes de l'unité est nulle, c'est à dire :

$$1 + z_1 + z_1^2 + \ldots + z_1^{n-1} = 0;$$

Définition 5:

Soit $n\in\mathbb{N}^*$ et $z\in\mathbb{C}$. On appelle racine n-ième de z tout nombre $\omega\in\mathbb{C}$ tel que $\omega^n=z$.

Proposition 10

Soit $n\in\mathbb{N}^*.$ Tout nombre complexe non nul admet n racines n-ièmes distinctes. Plus précidément, si w est tel que $w^n=Z$, avec $Z=re^{i\theta}$ ($Z\neq 0$), alors :

$$w^n = Z \Leftrightarrow w = r^{1/n} e^{i(\theta + 2k\pi)/n}, \text{ avec } k \in \llbracket 0; \ n-1 \rrbracket.$$

Exercice 7

[-M2-] Trouver les racines carrées de 3-4i. En déduire les racines carrées de 3+4i.

Exercice 8

[-M2-] Résoudre l'équation : $z^2 - (3+2i)z + 5 + i = 0$.

Exercice 9

[-M2-] En cherchant une racine évidente $(\pm 1, \pm 2, \pm i)$, trouver finalement les deux racines de chaque trinôme suivant :

- ① $P_1(z) = z^2 + iz 1 i$ ② $P_2(z) = 2z^2 + 2i(\sqrt{3} 1)z + 2\sqrt{3}$.

[-M3-] Déterminer les racines 8-èmes de l'unité, les représenter sur le cercle trigonométrique.

Exercice 11

[-M3-] Résoudre les équations suivantes et donner les formes exponentielles des solutions :

(a)
$$z^3 = 1$$
; (b) $z^3 = 8$ (c) $z^3 = 1 + i$ (d) $\left(\frac{z}{z-1}\right)^3 = 1$.