Chapitre 4

Nombres complexes : la base

Mathématiques PTSI

Lycée Déodat de Séverac

À l'issue de ce chapitre vous devez savoir :

- Faire du calcul algébrique élémentaire avec les nombres complexes sous forme algébrique;
- Passer de la forme algébrique à la forme trigonométrique et réciproquement;
- Faire du calcul algébrique élémentaire avec les nombres complexes sous forme exponentielle;
- Utiliser les nombres complexes pour transformer des expressions trigonométriques.

Plan

- Forme algébrique d'un nombre complexe
 - Définition
 - Opérations algébriques
 - Représentation géométrique d'un nombre complexe
 - Conjugué d'un nombre complexe
 - Les exercices du jour
- 2 Forme trigonométrique d'un nombre complexe
- 3 Forme exponentielle d'un nombre complexe
- 4 Utilisation des nombres complexes en trigonométrie

Définition 1:

- **⊙** On appelle nombre complexe tout nombre de la forme z = a + ib avec $a \in \mathbb{R}$, $b \in \mathbb{R}$ et i tel que $i^2 = -1$ (c'est à dire i solution de l'équation $x^2 = -1$). On note $\mathbb C$ l'ensemble des nombres complexes ;
- ② Si $z=a+ib\in\mathbb{C}$, on appelle : a la partie réelle de z, notée $\mathcal{R}e(z)$; b la partie imaginaire de z, notée $\mathcal{I}m(z)$;
- lacksquare L'écriture z=a+ib est appelée forme algébrique de z ;
- Deux nombres complexes sont égaux si leurs parties réelles ET imaginaires sont égales.

REMARQUEs:

- $\ \, \ \, \ \,$ Les nombres complexes tels que $\mathcal{R}e(z)=0$ sont appelés nombres imaginaires purs.

On étend naturellement (associativité, distributivité) les opérations algébriques réelles. Soient z=a+ib et z'=a'+ib' deux nombres complexes, on définit :

- **1** Ia somme z + z' = a + a' + i(b + b')
- l'inverse (pour $z \neq 0$) $\frac{1}{z} = \frac{1}{a+ib}$. $= \underbrace{\frac{a-ib}{(a+ib)(a-ib)}}_{=\overline{z}}$ $= \underbrace{\frac{a-ib}{a^2+b^2}}$

On vérifie par ailleurs que la somme et le produit sont encore commutatifs : $z+z^{\prime}=z^{\prime}+z$ et $zz^{\prime}=z^{\prime}z$.

À tout nombre complexe : z=a+ib, on associe le point du plan M de coordonnées $(a;\ b)$ dans le repère usuel. On note alors M(z) et on appelle z l'affixe de M.

Définition 2:

Pour $z=a+ib\in\mathbb{C}$, on appelle conjugué de z, et on note \overline{z} , le nombre complexe : $\overline{z}=a-ib$.

Proposition 1(propriétés de la conjugaison)

Soit z et z' deux nombres complexes. Alors :

$$z + \overline{z} = 2\mathcal{R}e(z)$$
$$z - \overline{z} = 2i\mathcal{I}m(z)$$

•
$$z + \overline{z} = 2\mathcal{R}e(z)$$

• $z - \overline{z} = 2i\mathcal{I}m(z)$
• $\overline{z + z'} = \overline{z} + \overline{z'}$
• $\overline{\overline{z}} = z$
• $\overline{z + z'} = \overline{z} + \overline{z'}$
• $\overline{\overline{z}} = z$
• $\overline{\overline{z}} = z$

$$\overline{\overline{z}} = z$$

📞 conséquences :

- 0 z imaginaire pur $\Leftrightarrow \mathcal{R}e(z) = 0 \Leftrightarrow z = -\overline{z}.$

Exercice 1

[-M1-] Donner la forme algébrique des nombres complexes suivants :

(a)
$$\frac{i+5}{(i+3)^2}$$
; (b) $\frac{3+i}{2-i} + \frac{2-i}{3+i}$; (c) $(\frac{3+i}{2-i})^2$.

Plan

- Forme algébrique d'un nombre complexe
- 2 Forme trigonométrique d'un nombre complexe
 - Module d'un nombres complexe
 - Forme trigonométrique et argument d'un nombre complexe
 - Les exercices du jour
- 3 Forme exponentielle d'un nombre complexe
- 4 Utilisation des nombres complexes en trigonométrie

Définition 3:

Pour z=a+ib, on appelle module de z le nombre réel positif : $|z|=\sqrt{a^2+b^2}$

Proposition 2(propriétés du module)

Soit z et z' deux nombres complexes. Alors :

•
$$|z| = 0 \Leftrightarrow z = 0$$

 $|\overline{z}| = |z|$
 $z\overline{z} = |z|^2$

$$|zz'| = |z||z'|$$

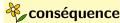
$$\begin{vmatrix} \frac{1}{z} \\ \frac{1}{z} \end{vmatrix} = \frac{1}{|z|}$$

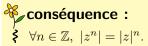
$$\begin{vmatrix} \frac{z}{z'} \\ \frac{|z|}{|z'|} \end{vmatrix} = \frac{|z|}{|z'|}$$

$$|\mathcal{R}e(z)| \le |z|$$

$$|\mathcal{I}m(z)| \le |z|$$

$$|\mathcal{R}e(z)| \le |z|$$
$$|\mathcal{I}m(z)| \le |z|$$





Forme trigonométrique d'un nombre complexe

plexe Forme trigonométrique et argument d'un nombre complexe

Proposition 3

- Tout nombre complexe $z \neq 0$ peut s'écrire sous la forme $z = r(\cos(\theta) + i\sin(\theta))$, avec r > 0 et $\theta \in \mathbb{R}$;
- **2** De plus, une telle écriture est unique à 2π près, c'est à dire, pour $r_1 > 0$, $r_2 > 0$, θ_1 et θ_2 deux réels, nous avons :

$$r_1(\cos(\theta_1) + i\sin(\theta_1)) = r_2(\cos(\theta_2) + i\sin(\theta_2)) \Leftrightarrow \begin{cases} r_1 = r_2 \\ \theta_1 \equiv \theta_2 \ [2\pi] \end{cases}$$

Définition 4:

- Pour $z \neq 0$, l'écriture $z = r(\cos(\theta) + i\sin(\theta))$ avec r > 0 et $\theta \in \mathbb{R}$ est appelée forme trigonométrique du nombre complexe z;
- 2 Le réel θ de l'écriture ci-dessus est appelé argument de z.

On dit **UN** argument, et non pas **L'** argument.

notation: On note arg(z) un argument de z.

Proposition 4(propriétés de l'argument)

Soient z et z' deux nombres complexes non nuls. Alors :

conséquence : Pour $n \in \mathbb{Z}$, $\arg(z^n) \equiv n \arg(z) \ [2\pi]$.

[-M1-] Calculer
$$|(1+i)^{26}|$$
.

Exercice 3

[-M1-] Résoudre l'équation |z-1| = |z+i|.

Exercice 4

[-M1-] Montrer que $\forall (z,z') \in \mathbb{C}^2, \ |z+z'|^2 = |z|^2 + 2\mathcal{R}e(z\overline{z'}) + |z'|^2.$

Exercice 5

[-M2-] Mettre sous forme trigonométrique les nombres complexes suivants : (a) -1-i; (b) $1-i\sqrt{3}$; (c) $\frac{(\sqrt{3}-i)^4}{1+i}$.

(a)
$$-1 - i$$
; (b) $1 - i\sqrt{3}$; (c) $\frac{(\sqrt{3} - i)^4}{1 + i}$

Plan

- Forme algébrique d'un nombre complexe
- 2 Forme trigonométrique d'un nombre complexe
- Forme exponentielle d'un nombre complexe
 - la formule d'Euler
 - la formule de De Moivre
 - factorisations par l'angle moitié
 - Exponentielle d'un nombre complexe
 - Les exercices du jour
- Utilisation des nombres complexes en trigonométrie

Définitions et premières propriétés :

Définition 5:

Pour $\theta \in \mathbb{R}$, on note $e^{i\theta}$ le nombre complexe $e^{i\theta} = \cos(\theta) + i\sin(\theta)$.

Proposition 5

Pour θ et θ' deux nombres réels, nous avons : $e^{i(\theta+\theta')}=e^{i\theta}e^{i\theta'}$.

conséquences :

⇒ Forme exponentielle d'un nombre complexe :

Proposition 6

- $\textbf{ 9 Soit } z \in \mathbb{C}^*. \text{ Alors il existe } r>0 \text{ et } \theta \in \mathbb{R} \text{ tels que } : z=re^{i\theta}.$
- 2

$$r_1 e^{i\theta_1} = r_2 e^{i\theta_2} \Leftrightarrow \left\{ \begin{array}{l} r_1 = r_2 \\ \theta_1 \equiv \theta_2 \ [2\pi] \end{array} \right.$$

REMARQUE : L'écriture $z=re^{i\theta}$ avec r>0 et $\theta\in\mathbb{R}$ est appelée forme exponentielle. Nous avons ainsi : $re^{i\theta}=r(\cos(\theta)+i\sin(\theta))$.

Proposition 7

Pour
$$\theta \in \mathbb{R}$$
, nous avons :
$$\cos(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2}$$

$$\sin(\theta) = \frac{e^{i\theta} - e^{-i\theta}}{2i}$$

Proposition 8

Pour $\theta \in \mathbb{R}$ et $n \in \mathbb{Z}$, nous avons :

$$(\cos(\theta) + i\sin(\theta))^n = \cos(n\theta) + i\sin(n\theta).$$

$$\forall \theta \in \mathbb{R}, \ 1 - e^{i\theta} = -2i\sin\left(\frac{\theta}{2}\right)e^{i\theta/2}.$$

Définition 6:

Soit $z \in \mathbb{C}$. L'exponentielle du nombre complexe z est notée e^z ou $\exp(z)$ et est défini par : $e^z = e^{\text{Re(z)}} \times e^{i\text{Im(z)}}$

 $e^z = e^{{\rm Re}({\rm z})} \times e^i$, où $e^{{\rm Re}({\rm z})}$ reprèsente l'exponentielle réelle.

Proposition 9(propriétés algébriques)

Pour z et z^\prime deux nombres complexes. Alors :

- 1 out z et z deux in 1 $e^{z+z'} = e^z e^{z'}$; 2 $(e^z)^{-1} = e^{-z}$; 2 $e^{z-z'} = \frac{e^z}{e^{z'}}$; 2 $e^{\overline{z}} = e^{\overline{z}}$.

Proposition 10

Soient $z, z' \in \mathbb{C}$.

$$\exp(z) = \exp(z') \Leftrightarrow \exists k \in \mathbb{Z}/z = z' + 2\pi ki$$

[-M3-] Mettre sous forme trigonométrique les nombres complexes suivants : (a) $-3e^{7i\pi/8}$; (b) $2ie^{i\pi/3}$.

Exercice 7

[-M3-] Mettre sous forme algébrique les nombres complexes : $e^{\ln(6)+i\pi/4}$ et $(1+e^{i\pi/3})^{26}$.

Plan

- Forme algébrique d'un nombre complexe
- 2 Forme trigonométrique d'un nombre complexe
- 3 Forme exponentielle d'un nombre complexe
- 4 Utilisation des nombres complexes en trigonométrie
 - Linéarisation d'expressions trigonométriques
 - Délinéarisation
 - Factorisation de $a\cos(x) + b\sin(x)$.
 - Les exercices du jour

Principe : Se débarasser des facteurs dans une expression trigonométrique.

Exemple:
$$\cos(x)\sin(x) = \frac{1}{2}\sin(2x)$$

Plus généralement, une linéarisation systématique s'obtient en utilisant les formules d'Euler :

Principe $\cos(px)$ et $\sin(px)$ à l'aide de puissances de $\cos(x)$ et $\sin(x)$.

Example:
$$\cos(2x) = \cos^2(x) - \sin^2(x) = 2\cos^2(x) - 1 = 1 - 2\sin^2(x)$$
.

Plus généralement, une délinéarisation systématique peut s'obtenir en utilisant les formules de De Moivre.

On suppose a et b non nuls simultanément.

Proposition 11

Il existe r>0 et $\theta\in\mathbb{R}$ tels que : $\forall x\in\mathbb{R},\ a\cos(x)+b\sin(x)=r\cos(x-\theta)$.

Exemple: Factorisation de cos(x) + sin(x).

- On calcule $r = \sqrt{1^2 + 1^2} = \sqrt{2}$.
- On factorise par $r: \cos(x) + \sin(x) = \sqrt{2} \left(\frac{1}{\sqrt{2}} \cos(x) + \frac{1}{\sqrt{2}} \sin(x) \right) = \sqrt{2} \left(\frac{\sqrt{2}}{2} \cos(x) + \frac{\sqrt{2}}{2} \sin(x) \right).$
- On cherche φ tel que : $\begin{cases} \cos(\varphi) = \frac{\sqrt{2}}{2} \\ \sin(\varphi) = \frac{\sqrt{2}}{2} \end{cases}$ On prend par exemple : $\varphi = \frac{\pi}{4}$.
- Ainsi: $\cos(x) + \sin(x) = \sqrt{2} \left(\cos\left(\frac{\pi}{4}\right) \cos(x) + \sin\left(\frac{\pi}{4}\right) \sin(x) \right) = \sqrt{2} \cos\left(\frac{\pi}{4} x\right) = \sqrt{2} \cos\left(x \frac{\pi}{4}\right).$

Exercice 8

[-M4-] Linéariser $\sin^4(x)$ sachant que $(a-b)^4=a^4-4a^3b+6a^2b^2-4ab^3+b^4.$

Exercice 9

[-M4-] Délinéariser $\sin(3x)$.

Exercice 10

[-M4-] Résoudre l'équation $\sqrt{3}\cos(x) + \sin(x) = 1$.

*