Chapitre 17

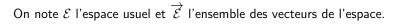
Géométrie dans l'espace

Mathématiques PTSI

Lycée Déodat de Séverac

À l'issue de ce chapitre vous devez savoir :

- Manipuler les notions de base et de repère de l'espace.
- Utiliser le calcul vectoriel pour caractériser l'orthogonalité, la colinéarité, la coplanéarité.
- Manipuler les différentes représentations d'une droite, d'un plan dans l'espace.
- Idem avec les sphères et les cercles.



Plan

- Repérage dans l'espace
 - Généralités
 - Les coordonnées cartésiennes
 - Coordonnées cylindriques
 - Les exercices du jour
- 2 Calcul vectoriel dans l'espace
- Plans de l'espace
- Droites de l'espace
- 6 Les sphères

⇒ La notion de vecteurs, ainsi que les opérations associées, sont les mêmes que dans le plan.

Définition 1:

On appelle combinaison linéaire de \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} tout vecteur \overrightarrow{t} de la forme : $\overrightarrow{t} = \alpha \overrightarrow{u} + \beta \overrightarrow{v} + \gamma \overrightarrow{w}$, avec α , β et γ trois nombres réels.

> Vecteurs coplanaires.

Définition 2:

On dit que trois vecteurs \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} sont coplanaires lorsqu'il existe α, β et γ non nuls simultanément tels que $\alpha \overrightarrow{u} + \beta \overrightarrow{v} + \gamma \overrightarrow{w} = \overrightarrow{0}$.

⇒ Bases de l'espace.

Définition 3:

On dit que $\mathcal{B}=(\overrightarrow{u},\overrightarrow{v},\overrightarrow{w})$ forme une base de \mathcal{E} si tout vecteur s'écrit **de manière unique** comme combinaison linéaire de \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} ;

Si
$$\mathcal{B}=(\overrightarrow{u},\overrightarrow{v},\overrightarrow{w})$$
 est une base de \mathcal{E} et $\overrightarrow{t}=\alpha\overrightarrow{u}+\beta\overrightarrow{v}+\gamma\overrightarrow{w}$, on appelle le triplet $(\alpha;\ \beta;\ \gamma)$ les composantes de \overrightarrow{t} dans \mathcal{E} . On note également : $\overrightarrow{t}=\begin{pmatrix}\alpha\\\beta\\\gamma\end{pmatrix}$.

(caractérisation des bases de l'espace) Trois vecteurs de $\mathcal E$ forment une base de $\mathcal E$ si et seulement s'ils sont non coplanaires.

⇒ Angles de vecteurs :

L'orientation d'un plan dans l'espace dépend du choix d'un vecteur orthogonal \overrightarrow{n} au plan défini par \overrightarrow{u} et \overrightarrow{v} .

On notera $(\overrightarrow{u}, \overrightarrow{v})$ l'angle orienté de deux vecteurs \overrightarrow{u} et \overrightarrow{v} de l'espace.

Définition 4: Coordonnées cartésiennes

- Soit O un point de l'espace. On dit que $\mathcal{R} = (O; \overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})$ est un repère cartésien de $\mathcal E$ lorsque $\mathcal B=(\overrightarrow{u},\overrightarrow{v},\overrightarrow{w})$ est une base de $\mathcal E$;
- $oldsymbol{\circ}$ Si de plus, \mathcal{B} est orthogonale, directe, orthonormale, on dira que \mathcal{R} est respectivement orthogonal, direct, orthonormé (ou orthonormal).

Proposition 2définition

Soit \mathcal{R} un repère cartésien et $M \in \mathcal{E}$. Alors il existe un unique triplet $(\alpha, \beta, \gamma) \in \mathbb{R}^3$, appelé coordonnées cartésiennes de M dans \mathcal{R} , tel que $\overrightarrow{OM} = \alpha \overrightarrow{u} + \beta \overrightarrow{v} + \gamma \overrightarrow{w}$. On note $M(\alpha; \beta; \gamma)$.

Proposition 3

Soit $\mathcal R$ un repère cartésien quelconque de l'espace associé à une base $\mathcal B$ et $A(x_A;\ y_A;\ z_A)$, $B(x_B;\ y_B;\ z_B) \ {\sf dans}\ {\cal R}. \ {\sf Alors}\ ({\sf dans}\ {\cal B}), \ \overrightarrow{AB} = egin{pmatrix} x_B - x_A \ y_B - y_A \ z_B - z_A \end{pmatrix}.$

On se place dans $(O;\overrightarrow{i};\overrightarrow{j};\overrightarrow{k})$ un repère orthormale direct. Un système de coordonnées cylindriques de M est un triplet $(r;\theta;z)$ de réels tels que les coordonnées cartésiennes de M soient

$$(r\cos(\theta); r\sin(\theta); z)$$

Exercice 1

[M1] On note
$$\mathcal{B}=(\overrightarrow{i},\overrightarrow{j},\overrightarrow{k})$$
 la base orthonormale directe usuelle et $\overrightarrow{u}=\begin{pmatrix}1\\0\\0\end{pmatrix}$, $\overrightarrow{v}=\begin{pmatrix}1\\1\\0\end{pmatrix}$, $\overrightarrow{w}=\begin{pmatrix}1\\1\\1\end{pmatrix}$ dans \mathcal{B} . On note $\mathcal{B}'=(\overrightarrow{u},\overrightarrow{v},\overrightarrow{w})$.

- En utilisant la définition, montrer que le vecteur de coordonnées cartésiennes $\begin{pmatrix} 1\\2\\3 \end{pmatrix}$ peut s'exprimer comme une combinaison linéaire
 - des vecteurs de \mathcal{B}' . Cette famille est-elle une base de l'espace?
- En utilisant la caractérisation des bases par les 3 vecteurs non coplanaires, montrer que cette famille est une base de l'espace.

Plan

- Repérage dans l'espace
- Calcul vectoriel dans l'espace
 - Produit scalaire de deux vecteurs
 - Produit vectoriel de deux vecteurs
 - Déterminant (ou produit mixte) de trois vecteurs
 - Les exercices du jour
- Plans de l'espace
- Droites de l'espace
- 6 Les sphères

Définition 6:

- Soient \overrightarrow{u} et \overrightarrow{v} deux vecteurs non nuls. On appelle produit scalaire de \overrightarrow{u} et \overrightarrow{v} , noté \overrightarrow{u} . \overrightarrow{v} le nombre réel tel que : \overrightarrow{u} . $\overrightarrow{v} = ||\overrightarrow{u}|| \times ||\overrightarrow{v}|| \times \cos(\overrightarrow{u}, \overrightarrow{v})$.
- ② Si l'un des vecteurs est nul, on pose : $\overrightarrow{u} \cdot \overrightarrow{v} = 0$.

REMARQUE: $\overrightarrow{u}.\overrightarrow{v}=0 \Leftrightarrow \overrightarrow{u}$ et \overrightarrow{v} sont orthogonaux.

Soient \overrightarrow{u} , \overrightarrow{v} , \overrightarrow{w} et $\lambda \in \mathbb{R}$. Alors :

$$\overrightarrow{v}$$
 \overrightarrow{v} \overrightarrow{v} \overrightarrow{v} : le produit scalaire est symétrique;

$$\begin{array}{ll} & \overrightarrow{u}.(\overrightarrow{v}+\overrightarrow{w})=\overrightarrow{u}.\overrightarrow{v}+\overrightarrow{u}.\overrightarrow{w} \\ \overrightarrow{u}.(\lambda\overrightarrow{v})=\lambda\overrightarrow{u}.\overrightarrow{v} \\ (\overrightarrow{u}+\overrightarrow{v}).\overrightarrow{w}=\overrightarrow{u}.\overrightarrow{w}+\overrightarrow{v}.\overrightarrow{w} \end{array} \end{array} \right\} \mbox{lin\'eaire à gauche} \\ \begin{pmatrix} \overrightarrow{u}+\overrightarrow{v}).\overrightarrow{w}=\overrightarrow{u}.\overrightarrow{w}+\overrightarrow{v}.\overrightarrow{w} \\ (\lambda\overrightarrow{u}).\overrightarrow{v}=\lambda\overrightarrow{u}.\overrightarrow{v} \end{array} \right\} \mbox{lin\'eaire à droite}$$

Soit $\mathcal{B} = (\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$ une base orthonormale et $\overrightarrow{u} \begin{pmatrix} a \\ b \\ c \end{pmatrix}, \overrightarrow{v} \begin{pmatrix} a' \\ b' \\ c' \end{pmatrix}$ dans \mathcal{B} . Alors :

$$\overrightarrow{u}.\overrightarrow{v} = aa' + bb' + cc'.$$

REMARQUE : En particulier, si
$$\overrightarrow{u}=\begin{pmatrix} a \\ b \\ c \end{pmatrix}$$
 dans une base orthonormale, alors

$$||\overrightarrow{u}|| = \sqrt{a^2 + b^2 + c^2}.$$

Définition 7:

- Soient \overrightarrow{u} et \overrightarrow{v} deux vecteurs non colinéaires. On appelle produit vectoriel de \overrightarrow{u} et \overrightarrow{v} le vecteur, noté $\overrightarrow{u} \wedge \overrightarrow{v}$, de norme : $||\overrightarrow{u}|| \times ||\overrightarrow{v}|| \times |\sin(\overrightarrow{u},\overrightarrow{v})|$, orthogonal à \overrightarrow{u} et \overrightarrow{v} , et tel que $(\overrightarrow{u},\overrightarrow{v},\overrightarrow{u}\wedge\overrightarrow{v})$ est une BASE directe de l'espace.
- Si \overrightarrow{u} et \overrightarrow{v} sont colinéaires, on pose : $\overrightarrow{u} \wedge \overrightarrow{v} = \overrightarrow{0}$.

REMARQUEs:

- ① Si \overrightarrow{u} et \overrightarrow{v} sont deux vecteurs orthogonaux de norme 1, alors $\mathcal{B}=(\overrightarrow{u},\overrightarrow{v},\overrightarrow{u}\wedge\overrightarrow{v})$ est orthonormale directe.
- **@** Réciproquement, si \overrightarrow{i} , \overrightarrow{j} , \overrightarrow{k} est une base orthonormale directe alors $\overrightarrow{k} = \overrightarrow{i} \land \overrightarrow{j}$.

Proposition 6

Soient \overrightarrow{u} et \overrightarrow{v} deux vecteurs de l'espace. Alors : \overrightarrow{u} et \overrightarrow{v} sont colinéaires si et seulement si $\overrightarrow{u} \wedge \overrightarrow{v} = \overrightarrow{0}$.

Soient \overrightarrow{u} , \overrightarrow{v} , \overrightarrow{w} et $\lambda \in \mathbb{R}$. Alors :

- $\overrightarrow{u} \wedge \overrightarrow{u} = \overrightarrow{0}$:
- 2 $\overrightarrow{u} \wedge \overrightarrow{v} = -\overrightarrow{v} \wedge \overrightarrow{u}$: le produit vectoriel est antisymétrique;

$$\overrightarrow{u} \wedge (\overrightarrow{v} + \overrightarrow{w}) = \overrightarrow{u} \wedge \overrightarrow{v} + \overrightarrow{v} \wedge (\lambda \overrightarrow{v}) = \lambda \overrightarrow{v} \wedge \overrightarrow{v}$$

 $\begin{array}{c} \overrightarrow{u} \wedge (\overrightarrow{v} + \overrightarrow{w}) = \overrightarrow{u} \wedge \overrightarrow{v} + \overrightarrow{u} \wedge \overrightarrow{w} \\ \overrightarrow{u} \wedge (\lambda \overrightarrow{v}) = \lambda \overrightarrow{u} \wedge \overrightarrow{v} \\ (\overrightarrow{u} + \overrightarrow{v}) \wedge \overrightarrow{w} = \overrightarrow{u} \wedge \overrightarrow{w} + \overrightarrow{v} \wedge \overrightarrow{w} \\ (\lambda \overrightarrow{u}) \wedge \overrightarrow{v} = \lambda \overrightarrow{u} \wedge \overrightarrow{v} \end{array} \right\} \\ \text{lin\'eaire à droite}$

bilinéaire

Soit
$$\mathcal{B} = (\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$$
 une base orthonormale directe et $\overrightarrow{u} \begin{pmatrix} a \\ b \\ c \end{pmatrix}, \overrightarrow{v} \begin{pmatrix} a' \\ b' \\ c' \end{pmatrix}$ dans \mathcal{B} . Alors : $\overrightarrow{u} \wedge \overrightarrow{v} = \begin{pmatrix} bc' - cb' \\ -(ac' - ca') \\ ab' - ba' \end{pmatrix}$.

• Soit ABC un triangle d'aire notée A. Alors :

$$\mathcal{A} = \frac{1}{2} \left| \left| \overrightarrow{AB} \wedge \overrightarrow{AC} \right| \right|.$$

2 Soit ABDC un parallélogramme d'aire notée A. Alors :

$$\mathcal{A} = \left| \left| \overrightarrow{AB} \wedge \overrightarrow{AC} \right| \right|.$$

Définition 8:

Soient \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} trois vecteurs. On appelle déterminant (ou produit mixte) de \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} , et on note $[\overrightarrow{u},\overrightarrow{v},\overrightarrow{w}]$ le réel : $[\overrightarrow{u},\overrightarrow{v},\overrightarrow{w}]=(\overrightarrow{u}\wedge\overrightarrow{v}).\overrightarrow{w}$.

- Pour tous réels λ et μ nous avons : $\begin{bmatrix} \overrightarrow{u}, \lambda \overrightarrow{v_1} + \mu \overrightarrow{v_2}, \overrightarrow{w} \end{bmatrix} = \lambda \begin{bmatrix} \overrightarrow{u}, \overrightarrow{v_1}, \overrightarrow{w} \end{bmatrix} + \mu \begin{bmatrix} \overrightarrow{u}, \overrightarrow{v_2}, \overrightarrow{w} \end{bmatrix} \\ [\overrightarrow{u}, \overrightarrow{v}, \lambda \overrightarrow{w_1} + \mu \overrightarrow{w_2}] = \lambda \begin{bmatrix} \overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w_1} \end{bmatrix} + \mu \begin{bmatrix} \overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w_2} \end{bmatrix} \\ [\lambda \overrightarrow{u_1} + \mu \overrightarrow{u_2}, \overrightarrow{v}, \overrightarrow{w}] = \lambda \begin{bmatrix} \overrightarrow{u_1}, \overrightarrow{v}, \overrightarrow{w} \end{bmatrix} + \mu \begin{bmatrix} \overrightarrow{u_2}, \overrightarrow{v}, \overrightarrow{w} \end{bmatrix}$ trilinéaire
- $[\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}] = -[\overrightarrow{v}, \overrightarrow{u}, \overrightarrow{w}]$. Plus généralement, le déterminant change de signe lorsqu'on échange deux vecteurs (antisymétrie) :

$$[\overrightarrow{u},\overrightarrow{v},\overrightarrow{w}]=-[\overrightarrow{u},\overrightarrow{w},\overrightarrow{v}]=-[\overrightarrow{w},\overrightarrow{v},\overrightarrow{u}]$$

 $[\overrightarrow{u}, \overrightarrow{u}, \overrightarrow{v}] = [\overrightarrow{v}, \overrightarrow{u}, \overrightarrow{u}] = [\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{u}] = 0 \text{ (alterné)}.$

Soit
$$\mathcal{B} = (\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$$
 une base orthonormale directe et $\overrightarrow{u} \begin{pmatrix} a_1 \\ b_1 \\ c_1 \end{pmatrix}, \overrightarrow{v} \begin{pmatrix} a_2 \\ b_2 \\ c_2 \end{pmatrix}$ et $\overrightarrow{w} \begin{pmatrix} a_3 \\ b_3 \\ c_3 \end{pmatrix}$ dans \mathcal{B} . Alors :
$$[\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}] = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = a_3 \begin{vmatrix} b_1 & b_2 \\ c_1 & c_2 \end{vmatrix} - b_3 \begin{vmatrix} a_1 & a_2 \\ c_1 & c_2 \end{vmatrix} + c_3 \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}.$$

Soit V le volume du parallélépipède défini par les trois vecteurs $\overrightarrow{AB}, \overrightarrow{AC}$ et $\overrightarrow{AD}.$ Alors :

$$V = \left| \left[\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD} \right] \right|.$$

Soient \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} trois vecteurs de l'espace. Alors :

- $\textbf{9} \ \, \mathcal{B} = (\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}) \text{ est une base directe de l'espace si et seulement si } [\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}] > 0.$

Exercice 2

[M2] Calculer $\overrightarrow{u} \wedge \overrightarrow{v}$ avec $\overrightarrow{u} \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$ et $\overrightarrow{v} \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$, puis déterminer une base ortho**normale** directe à l'aide de ces vecteurs.

Exercice 3

[M2] En notant $A(1;\ 0;\ 1)$ et $B(0;\ 1;\ 2)$, calculer l'aire du triangle OAB.

Plan

- Repérage dans l'espace
- 2 Calcul vectoriel dans l'espace
- Plans de l'espace
 - Caractérisations équivalentes d'un plan
 - Equation cartésienne d'un plan
 - Système d'équations paramétriques
 - Distance d'un point à un plan
 - Intersection de deux plans
 - Les exercices du jour
- Droites de l'espace
- 5 Les sphères

• soit par la donnée de trois points non alignés A, B et C. Alors $\mathcal P$ se note $A+\operatorname{Vect}(\overrightarrow{AB};\overrightarrow{AC})$ et est l'ensemble des points M tels que

$$\left[\overrightarrow{AM},\overrightarrow{AB},\overrightarrow{AC}\right]=0;$$

• soit par la donnée d'un point A et de deux vecteurs $\overrightarrow{u}, \overrightarrow{v}$ non colinéaires. Alors $\mathcal P$ se note $A+\mathrm{Vect}(\overrightarrow{u};\overrightarrow{v})$ et $\mathcal P$ est l'ensemble des points M tels que

$$\left[\overrightarrow{AM}, \overrightarrow{u}, \overrightarrow{v}\right] = 0;$$

• soit par la donnée d'un point A et d'un vecteur \overrightarrow{n} orthogonal à \mathcal{P} . Alors, \mathcal{P} est l'ensemble des points M tels que \overrightarrow{AM} et \overrightarrow{n} sont orthogonaux c'est à dire tels que :

$$\overrightarrow{AM}.\overrightarrow{n}=0.$$

Soit $(O; \overrightarrow{i}; \overrightarrow{j}; \overrightarrow{k})$ un repère cartésien orthonormé.

- Soit \mathcal{P} un plan et $M(x;\ y;\ z)$ un point. Si $M\in\mathcal{P}$ alors il existe des réels a,b,c,d tels que ax+by+cz+d=0 avec a,b,c non nuls simultanément. Une telle équation est appelée équation cartésienne;

REMARQUE:

Si ax + by + cz + d = 0 est une équation cartésienne d'un plan \mathcal{P} , alors $\overrightarrow{n} \begin{pmatrix} a \\ b \end{pmatrix}$ est un vecteur orthogonal à \mathcal{P} .

Soit $\mathcal{P}=A+\mathrm{Vect}(\overrightarrow{u};\overrightarrow{v})$. Alors $M\in P$ si et seulement si \overrightarrow{AM} est coplanaire à \overrightarrow{u} et \overrightarrow{v} ce qui équivaut à $\exists t;t'\in\mathbb{R};\overrightarrow{AM}=t\overrightarrow{u}+t'\overrightarrow{v}$. Ainsi, en utilisant les notations usuelles, et $\overrightarrow{u}=\begin{pmatrix} a\\b\\c \end{pmatrix};\overrightarrow{v}=\begin{pmatrix} a'\\b'\\c' \end{pmatrix}$:

$$M \in P \Leftrightarrow \exists t; t' \in \mathbb{R}; \begin{cases} x = x_a + ta + t'a' \\ y = y_a + tb + t'b' \\ z = z_a + tc + t'c' \end{cases}$$

La distance de A à P est égale à

$$d(A,\mathcal{P})=\frac{|ax_A+by_A+cz_A+d|}{\sqrt{a^2+b^2+c^2}}.$$
 avec $ax+by+cz+d=0$ une équation cartésienne de $P.$

Soient $\mathcal P$ et $\mathcal P'$ deux plans d'équations cartésiennes respectives : ax+by+cz+d=0 et a'x+b'y+c'z+d'=0. Alors :

- $\bullet \ \, \text{si} \, \left(\begin{array}{c} a \\ b \\ c \end{array} \right) \wedge \left(\begin{array}{c} a' \\ b' \\ c' \end{array} \right) = \overrightarrow{0} \, , \ \, \mathcal{P} \, \, \text{et} \, \, \mathcal{P}' \, \, \text{sont parallèles ou confondus} \, ;$
- $\text{ si } \left(\begin{array}{c} a \\ b \\ c \end{array}\right) \wedge \left(\begin{array}{c} a' \\ b' \\ c' \end{array}\right) \neq \overrightarrow{0}, \ \mathcal{P} \text{ et } \mathcal{P}' \text{ sont sécants en une droite } \text{ dont }$

une représentation cartésienne est : $\left\{ \begin{array}{l} ax+by+cz+d=0\\ a'x+b'y+c'z+d'=0 \end{array} \right.$

Exercice 4

[M3] Déterminer une équation cartésienne du plan \mathcal{P} passant par le point de coordonnées $(1;\ 1;\ 1)$ et de vecteur orthogonal \overrightarrow{n} $\begin{pmatrix} a \\ b \\ c \end{pmatrix} \neq \overrightarrow{0}$.

Exercice 5

[M3] Déterminer une équation paramétrique du plan d'équation cartésienne : x+2y+3z-1=0.

Plan

- Repérage dans l'espace
- 2 Calcul vectoriel dans l'espace
- 3 Plans de l'espace
- Droites de l'espace
 - Caractérisations équivalentes d'une droite
 - Représentations cartésiennes
 - Représentations paramétriques
 - Distance d'un point à un droite
 - Les exercices du jour
- 5 Les sphères

Une droite \mathcal{D} de l'espace est caractérisée :

• soit par la donnée de deux points distincts A et B. On note alors $\mathcal{D}=(AB)=A+\mathrm{Vect}(\overrightarrow{AB})$ et (AB) est l'ensemble des points M tels que :

$$\overrightarrow{AM} \wedge \overrightarrow{AB} = \overrightarrow{0};$$

• soit par la donnée d'un point A et d'un vecteur directeur \overrightarrow{u} non nul. Alors $\mathcal D$ se note $A+\mathrm{Vect}(\overrightarrow{u})$ est l'ensemble des points M tels que :

$$\overrightarrow{AM} \wedge \overrightarrow{u} = \overrightarrow{0};$$

• soit par la donnée d'un point A et de deux vecteurs orthogonaux $\overrightarrow{n_1}$ et $\overrightarrow{n_2}$. Alors : \mathcal{D} est l'ensemble des points M tels que :

$$\begin{cases} \overrightarrow{AM}.\overrightarrow{n_1} = 0\\ \overrightarrow{AM}.\overrightarrow{n_2} = 0 \end{cases}.$$

• soit par l'intersection de deux plans non parallèles.

Toute droite admet une représentation, appelée représentation cartésienne, de la forme : $\begin{cases} ax+by+cz+d=0\\ a'x+b'y+c'z+d'=0 \end{cases} \text{ avec } (a,b,c); (a',b',c') \in \mathbb{R}^3 - \{(0,0,0)\}$

REMARQUEs:

- Une droite admet une infinité de représentations cartésiennes;
- Si $\begin{cases} ax + by + cz + d = 0 \\ a'x + b'y + c'z + d' = 0 \end{cases}$ est une représentation cartésienne d'une droite \mathcal{D} , alors :

 - $\overrightarrow{u} = \overrightarrow{n_1} \wedge \overrightarrow{n_2}$ est un vecteur directeur de \mathcal{D} est un vecteur directeur de \mathcal{D} .

Une droite \mathcal{D} de vecteur directeur $\overrightarrow{u}\begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} \neq \overrightarrow{0}$ et passant par le point $A(a;\ b;\ c)$ admet une <u>représentation paramétrique</u> de la forme : $\begin{cases} x=a+t\alpha \\ y=b+t\beta \\ z=c+t\gamma \end{cases}$

La distance de M à D est :

$$d(M,D) = \frac{||\overrightarrow{u} \wedge \overrightarrow{AM}||}{||\overrightarrow{u}||}$$

Exercice 6

[M3] Déterminer une représentation cartésienne de la droite passant par $A(1;\ 1;\ 1)$ et orthogonale aux vecteurs $\overrightarrow{n_1}\begin{pmatrix} 1\\0\\-1\end{pmatrix}$ et $\overrightarrow{n_2}\begin{pmatrix} 1\\1\\0\end{pmatrix}$.

Exercice 7

[M3] Déterminer une représentation paramétrique de la droite de représentation cartésienne : $\left\{ \begin{array}{ll} x+z+1=0 \\ x-z=0 \end{array} \right. .$

$$\begin{split} & [\text{M3}] \operatorname{Soit} \mathcal{P} = A(1,1,1) + \operatorname{Vect} \Big(\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}; \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \Big) \text{ et } \forall t \in \mathbb{R}, \mathcal{D}_t = O(0,0,0) + \\ & \operatorname{Vect} \Big(\begin{pmatrix} t+1 \\ t \\ t \end{pmatrix} \Big). \end{split}$$
 Quelle est la nature de \mathcal{P} ? de \mathcal{D}_t ?

- Montrer que $\forall t \in \mathbb{R}, \mathcal{D}_t \subset \mathcal{P}$.

Exercice 9

[M2-M3] Calculer la distance de l'origine au plan \mathcal{P} d'équation x+y+z=1 puis à la droite (AB), avec $A(1;\ 0;\ 1)$ et $B(0;\ 1;\ 0)$.

Plan

- Repérage dans l'espace
- 2 Calcul vectoriel dans l'espace
- 3 Plans de l'espace
- 4 Droites de l'espace
- 5 Les sphères
 - Caractérisation
 - Intersection d'un plan et d'une sphère
 - Intersection d'une sphère et d'une droite
 - Les exercices du jour

Définition 9:

On appelle sphère S de centre Ω et de rayon R>0 l'ensemble des points M de $\mathcal E$ tels que : $\Omega M=R$.

Proposition 20

- La sphère S de centre $\Omega(a;\ b;\ c)$ et de rayon R admet une équation, appelée équation cartésienne, de la forme : $(x-a)^2+(y-b)^2+(z-c)^2=R^2 :$
- ② Réciproquement, si $(a;\ b;\ c)\in\mathbb{R}^3$ et d>0, l'ensemble des points $M(x;\ y;\ z)$ tels que : $(x-a)^2+(y-b)^2+(z-c)^2=d$ est l'équation d'une sphère de centre $\Omega(a;\ b;\ c)$ et de rayon \sqrt{d} .

Soient A,B deux points distincts de l'espace et $\mathcal S$ la sphère de diamètre [AB]. Alors

$$M \in \mathcal{S} \Leftrightarrow \overrightarrow{MA}.\overrightarrow{MB} = 0.$$

Soient S la sphère de centre Ω et de rayon R et ${\mathcal P}$ un plan. Alors :

- $\begin{array}{l} \textbf{9} \ \ \text{si} \ \ d(\Omega; \ \mathcal{P}) < R \text{, l'intersection de } S \ \text{et } \mathcal{P} \ \text{est un cercle de rayon} \\ r = \sqrt{R^2 d(\Omega; \ \mathcal{P})^2} \text{; De plus le centre de ce cercle est la projection} \\ \text{orthogonale de } \Omega \ \text{sur le plan}. \end{array}$
- ② si $d(\Omega; \mathcal{P}) = R$, \mathcal{C} et \mathcal{P} se coupent en un seul point M_0 . De plus \mathcal{P} est dit tangent à la sphère en M_0 et (ΩM_0) et \mathcal{P} sont perpendiculaires;
- \bullet si $d(\Omega; \mathcal{P}) > R$, \mathcal{C} et \mathcal{P} ne se coupent pas.

Soient S une sphère de centre Ω et de rayon R, et \mathcal{D} une droite. Alors :

- si $d(\Omega; \mathcal{D}) < R$, S et \mathcal{D} se coupent en deux points;
- \bullet si $d(\Omega; \mathcal{D}) = R$, S et \mathcal{D} se coupent en un seul point M_0 . De plus \mathcal{D} est tangente à la sphère en M_0 et (ΩM_0) et \mathcal{D} sont perpendiculaires;
- \bullet si $d(\Omega; \mathcal{D}) > R$, S et \mathcal{D} ne se coupent pas.

Exercice 10

[M4] Montrer que l'ensemble des points M(x;y;z) tels que : $x^2-4x+y^2+6y+z^2-2z-23=0$ est une sphère dont on précisera le centre et le rayon.

Exercice 11

[M4] Déterminer l'intersection de la sphère d'équation $x^2+y^2+z^2=1$ avec la droite (AB), où $A(1;\ 0;\ 1)$ et $B(0;\ 1;\ 0)$.

Exercice 12

[M4] Montrer que l'ensemble de représentation cartésienne : $\begin{cases} x^2+y^2+z^2=1\\ x+y+z=1 \end{cases}$ est un cercle dont on précisera le centre et le rayon.

Exercice 13

[M4] Soit la sphère de centre O(0,0,0) et de rayon 1 puis la droite $\mathcal{D}=A(1,1,1)+\mathrm{Vect}\binom{0}{2}$. Montrer que cette droite est contenue dans deux plans tangents à cette sphère.