Chapitre 4

Études de fonctions réelles

Mathématiques PTSI

Lycée Déodat de Séverac

Plan

- Généralités
 - Domaine de définition et opérations usuelles
 - Courbe représentative d'une fonction
 - Fonctions périodiques, paires et impaires
 - Sens de variation d'une fonction.
 - Fonctions majorées, minorées et bornées
- Dérivée d'une fonction
- 3 Limites et asymptotes
- 4 Plan d'étude d'une fonction et applications

- Généralités
 - Domaine de définition et opérations usuelles
 - Courbe représentative d'une fonction
 - Fonctions périodiques, paires et impaires
 - Sens de variation d'une fonction
 - Fonctions majorées, minorées et bornées
- Dérivée d'une fonction
 - Nombre dérivé en un point et tangente à la courbe représentative
 - Fonction dérivée
 - Calculs de fonctions dérivées
- Limites et asymptotes
 - Opérations élémentaires sur les limites
 - Quelques techniques pour lever une forme indéterminée
 - Asymptotes
- Plan d'étude d'une fonction et applications
 - Plan d'étude d'une fonction.
 - Inégalités classiques
 - Exemple d'application : le problème de la boîte

⇒ Domaine de définition :

Définition:

Une fonction réelle de la variable réelle, notée f, est la donnée d'un sous **ensemble** de \mathbb{R} , appelé ensemble de définition et noté \mathcal{D}_f ,

Domaine de définition :

Définition:

Une fonction réelle de la variable réelle, notée f, est la donnée d'un sous ensemble de \mathbb{R} , appelé ensemble de définition et noté \mathcal{D}_f , et d'un procédé qui, à chaque élément x de \mathcal{D}_f associe un unique nombre réel noté f(x).

Domaine de définition :

Définition:

Une fonction réelle de la variable réelle, notée f, est la donnée d'un **sous** ensemble de \mathbb{R} , appelé ensemble de définition et noté \mathcal{D}_f , et d'un procédé qui, à chaque élément x de \mathcal{D}_f associe un unique nombre réel noté f(x). On note:

$$f: \left\{ \begin{array}{ccc} \mathcal{D}_f & \to & \mathbb{R} \\ x & \mapsto & f(x) \end{array} \right.$$

Domaine de définition :

Définition :

Une fonction réelle de la variable réelle, notée f, est la donnée d'un **sous** ensemble de \mathbb{R} , appelé ensemble de définition et noté \mathcal{D}_f , et d'un procédé qui, à chaque élément x de \mathcal{D}_f associe un unique nombre réel noté f(x). On note:

$$f: \left\{ \begin{array}{ccc} \mathcal{D}_f & \to & \mathbb{R} \\ x & \mapsto & f(x) \end{array} \right.$$

Parfois, une fonction est définie uniquement par la donnée de l'expression f(x), sans que l'ensemble \mathcal{D}_f ne soit précisé. Dans ce cas, il s'agit de le déterminer, c'est à dire de trouver le « plus grand ensemble »de \mathbb{R} tel que l'expression f(x) ait un sens.

⇒ opérations usuelles :

Définition:

Étant données deux fonctions f et g de $\mathbb R$ vers $\mathbb R$, on appelle :

lacksquare Somme de f et g la fonction, notée f+g, telle que (f+g)(x) = f(x) + g(x);

⇒ opérations usuelles :

Définition:

Étant données deux fonctions f et g de $\mathbb R$ vers $\mathbb R$, on appelle :

- **1** Somme de f et g la fonction, notée f + g, telle que (f+g)(x) = f(x) + g(x);
- 2 Produit de f et g la fonction, notée fg, telle que $(fg)(x) = f(x) \times g(x);$

⇒ opérations usuelles :

Définition :

Étant données deux fonctions f et g de $\mathbb R$ vers $\mathbb R$, on appelle :

- Somme de f et g la fonction, notée f+g, telle que (f+q)(x) = f(x) + q(x):
- 2 Produit de f et g la fonction, notée fg, telle que $(fg)(x) = f(x) \times g(x);$
- **3** Composée de g par f la fonction, notée $f \circ g$, telle que $(f \circ q)(x) = f(q(x)).$

(1)
$$f(x) = x$$
, $g(x) = x^2$, $(f - 3g)(x) =$

(2)
$$f(x) = x + 1$$
, $g(x) = x^2$, $(fg)(x) =$

(3)
$$f(x) = x + 1$$
, $g(x) = x^2$, $(f \circ g)(x) = (g \circ f)(x) = (g \circ f)(x) = (g \circ f)(x)$

(4)
$$f(x) = \ln(x), g(x) = -x^2, (g \circ f)(x) = (f \circ g)(x) =$$

(1)
$$f(x) = x$$
, $g(x) = x^2$, $(f - 3g)(x) = x - 3x^2$;

(2)
$$f(x) = x + 1$$
, $g(x) = x^2$, $(fg)(x) =$

(3)
$$f(x) = x + 1$$
, $g(x) = x^2$, $(f \circ g)(x) = (g \circ f)(x) = (g \circ f)(x) = (g \circ f)(x)$

(4)
$$f(x) = \ln(x), g(x) = -x^2, (g \circ f)(x) = (f \circ g)(x) =$$

(1)
$$f(x) = x$$
, $g(x) = x^2$, $(f - 3g)(x) = x - 3x^2$;

(2)
$$f(x) = x + 1$$
, $g(x) = x^2$, $(fg)(x) = x^3 + x^2$;

(3)
$$f(x) = x + 1$$
, $g(x) = x^2$, $(f \circ g)(x) = (g \circ f)(x) =$

(4)
$$f(x) = \ln(x), g(x) = -x^2, (g \circ f)(x) = (f \circ g)(x) =$$

(1)
$$f(x) = x$$
, $g(x) = x^2$, $(f - 3g)(x) = x - 3x^2$;

(2)
$$f(x) = x + 1$$
, $g(x) = x^2$, $(fg)(x) = x^3 + x^2$;

(3)
$$f(x) = x + 1$$
, $g(x) = x^2$, $(f \circ g)(x) = (g \circ f)(x) =$

(4)
$$f(x) = \ln(x)$$
, $g(x) = -x^2$, $(g \circ f)(x) = -\ln(x)^2$; $(f \circ g)(x) = \ln(-x^2)$.

- Généralités
 - Domaine de définition et opérations usuelles
 - Courbe représentative d'une fonction
 - Fonctions périodiques, paires et impaires
 - Sens de variation d'une fonction
 - Fonctions majorées, minorées et bornées
- Dérivée d'une fonction
 - Nombre dérivé en un point et tangente à la courbe représentative
 - Fonction dérivée
 - Calculs de fonctions dérivées
- Limites et asymptotes
 - Opérations élémentaires sur les limites
 - Quelques techniques pour lever une forme indéterminée
 - Asymptotes
- Plan d'étude d'une fonction et applications
 - Plan d'étude d'une fonction.
 - Inégalités classiques
 - Exemple d'application : le problème de la boîte

La représentation graphique, ou la courbe représentative, d'une fonction f dans le repère usuel est l'ensemble des points de coordonnées (x;f(x)) avec $x \in \mathcal{D}_f$.

8 / 53

La représentation graphique, ou la courbe représentative, d'une fonction fdans le repère usuel est l'ensemble des points de coordonnées (x; f(x)) avec $x \in \mathcal{D}_f$.

Proposition

Soit a un réel. On note C_f la courbe représentative de $f: \mathcal{D}_f \to \mathbb{R}$. Alors

fonction	La représentation graphique est l'image de \mathcal{C}_f par :
$x \mapsto f(x) + a$	
$x \mapsto f(x+a)$	
$x \mapsto f(a-x)$	

La représentation graphique, ou la courbe représentative, d'une fonction fdans le repère usuel est l'ensemble des points de coordonnées (x; f(x)) avec $x \in \mathcal{D}_f$.

Proposition

Soit a un réel. On note C_f la courbe représentative de $f: \mathcal{D}_f \to \mathbb{R}$. Alors

fonction	La représentation graphique est l' image de \mathcal{C}_f par :
$x \mapsto f(x) + a$	translation de vecteur $a\overrightarrow{j}$
$x \mapsto f(x+a)$	
$x \mapsto f(a-x)$	

La représentation graphique, ou la courbe représentative, d'une fonction fdans le repère usuel est l'ensemble des points de coordonnées (x; f(x)) avec $x \in \mathcal{D}_f$.

Proposition

Soit a un réel. On note \mathcal{C}_f la courbe représentative de $f:\mathcal{D}_f\to\mathbb{R}$. Alors

fonction	La représentation graphique est l'image de \mathcal{C}_f par :
$x \mapsto f(x) + a$	translation de vecteur $a\overrightarrow{j}$
$x \mapsto f(x+a)$	translation de vecteur $\overbrace{-a\stackrel{ ightarrow}{i}}$
$x \mapsto f(a-x)$	

La représentation graphique, ou la courbe représentative, d'une fonction fdans le repère usuel est l'ensemble des points de coordonnées (x; f(x)) avec $x \in \mathcal{D}_f$.

Proposition

Soit a un réel. On note \mathcal{C}_f la courbe représentative de $f:\mathcal{D}_f\to\mathbb{R}$. Alors

fonction	La représentation graphique est l'image de \mathcal{C}_f par :
$x \mapsto f(x) + a$	translation de vecteur $a\overrightarrow{j}$
$x \mapsto f(x+a)$	translation de vecteur $\overbrace{-a \; \overrightarrow{i}}$
$x \mapsto f(a-x)$	symétrie orthogonale par rapport à la droite d'équation $x=rac{a}{2}$

- Généralités
 - Domaine de définition et opérations usuelles
 - Courbe représentative d'une fonction
 - Fonctions périodiques, paires et impaires
 - Sens de variation d'une fonction
 - Fonctions majorées, minorées et bornées
- Dérivée d'une fonction
 - Nombre dérivé en un point et tangente à la courbe représentative
 - Fonction dérivée
 - Calculs de fonctions dérivées
- 3 Limites et asymptotes
 - Opérations élémentaires sur les limites
 - Quelques techniques pour lever une forme indéterminée
 - Asymptotes
- 4 Plan d'étude d'une fonction et applications
 - Plan d'étude d'une fonction
 - Inégalités classiques
 - Exemple d'application : le problème de la boîte

⇒ fonctions périodiques :

Définition:

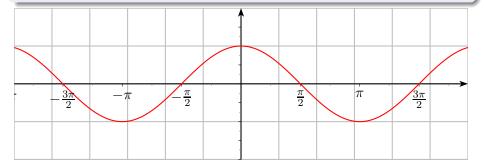
Soit f une fonction définie sur un ensemble D. On dit que f est T-périodique (ou périodique de période T) sur D lorsque : (i) $\forall x \in D, x+T \in D$; (ii) $\forall x \in D, f(x+T) = f(x)$.

⇒ fonctions périodiques :

Définition:

Soit f une fonction définie sur un ensemble D. On dit que f est T-périodique (ou périodique de période T) sur D lorsque :

- (i) $\forall x \in D, x + T \in D$;
- (ii) $\forall x \in D, f(x+T) = f(x)$.

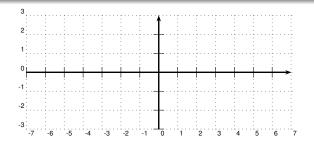


Proposition

Si f est T-périodique sur D, alors \mathcal{C}_f est invariante par translation de vecteur

Proposition

Si f est T-périodique sur D, alors \mathcal{C}_f est invariante par translation de vecteur



fonctions paires et impaires :

Définition:

Soit f une fonction définie sur \mathcal{D} . On dit que f est :

• paire lorsque : (i) $\forall x \in \mathcal{D}, -x \in \mathcal{D}$

(ii) $\forall x \in \mathcal{D}, f(-x) = f(x)$

fonctions paires et impaires :

Définition :

Soit f une fonction définie sur \mathcal{D} . On dit que f est :

- paire lorsque : (i) $\forall x \in \mathcal{D}, -x \in \mathcal{D}$
 - (ii) $\forall x \in \mathcal{D}, f(-x) = f(x)$
- ② impaire lorsque : (i) $\forall x \in \mathcal{D}, -x \in \mathcal{D}$
 - (ii) $\forall x \in \mathcal{D}, f(-x) = -f(x)$

> fonctions paires et impaires :

Définition :

Soit f une fonction définie sur \mathcal{D} . On dit que f est :

• paire lorsque : (i) $\forall x \in \mathcal{D}, -x \in \mathcal{D}$

(ii) $\forall x \in \mathcal{D}, f(-x) = f(x)$

② impaire lorsque : (i) $\forall x \in \mathcal{D}, -x \in \mathcal{D}$

(ii) $\forall x \in \mathcal{D}, f(-x) = -f(x)$

Proposition

- La courbe représentative d'une fonction paire est symétrique par rapport à l'axe des ordonnées :
- La courbe représentative d'une fonction impaire est symétrique par rapport à l'origine du repère.

- Généralités
 - Domaine de définition et opérations usuelles
 - Courbe représentative d'une fonction
 - Fonctions périodiques, paires et impaires
 - Sens de variation d'une fonction
 - Fonctions majorées, minorées et bornées
- Dérivée d'une fonction
 - Nombre dérivé en un point et tangente à la courbe représentative
 - Fonction dérivée
 - Calculs de fonctions dérivées
- Limites et asymptotes
 - Opérations élémentaires sur les limites
 - Quelques techniques pour lever une forme indéterminée
 - Asymptotes
- Plan d'étude d'une fonction et applications
 - Plan d'étude d'une fonction.
 - Inégalités classiques
 - Exemple d'application : le problème de la boîte

Soit f une fonction définie sur un ensemble D. On dit que f est :

lacktriangledown strictement croissante sur D lorsque :

$$\forall (x; \ y) \in D^2, \ x < y \Rightarrow f(x) < f(y);$$

Soit f une fonction définie sur un ensemble D. On dit que f est :

• strictement croissante sur D lorsque :

$$\forall (x; \ y) \in D^2, \ x < y \Rightarrow f(x) < f(y);$$

$$\forall (x; y) \in D^2, \ x < y \Rightarrow f(x) > f(y);$$

Soit f une fonction définie sur un ensemble D. On dit que f est :

- strictement croissante sur D lorsque : $\forall (x; y) \in D^2, x < y \Rightarrow f(x) < f(y)$;

$$\forall (x; y) \in D^2, \ x < y \Rightarrow f(x) > f(y);$$

③ croissante sur D lorsque : $\forall (x; y) \in D^2, \ x < y \Rightarrow f(x) \leq f(y)$;

Soit f une fonction définie sur un ensemble D. On dit que f est :

- strictement croissante sur D lorsque : $\forall (x; y) \in D^2, x < y \Rightarrow f(x) < f(y)$;

$$\forall (x; \ y) \in D^2, \ x < y \Rightarrow f(x) > f(y);$$

- $\textbf{ 0} \ \, \text{croissante sur} \,\, D \,\, \text{lorsque} : \forall (x; \,\, y) \in D^2, \,\, x < y \Rightarrow f(x) \leq f(y) \,;$
- $\textbf{0} \ \ \text{d\'ecroissante sur} \ D \ \ \text{lorsque} : \forall (x; \ y) \in D^2, \ x < y \Rightarrow f(x) \geq f(y) \ ;$

Soit f une fonction définie sur un ensemble D. On dit que f est :

- strictement croissante sur D lorsque : $\forall (x; y) \in D^2, x < y \Rightarrow f(x) < f(y)$;
- 2 strictement décroissante sur D lorsque :

$$\forall (x; \ y) \in D^2, \ x < y \Rightarrow f(x) > f(y);$$

- $\textbf{ 0} \ \, \text{croissante sur} \,\, D \,\, \text{lorsque} : \forall (x; \,\, y) \in D^2, \,\, x < y \Rightarrow f(x) \leq f(y) \,;$
- $\textbf{ 0} \ \text{ décroissante sur } D \ \text{lorsque} : \forall (x; \ y) \in D^2, \ x < y \Rightarrow f(x) \geq f(y) \, ;$
- $oldsymbol{0}$ strictement monotone sur D lorsque f est strictement décroissante ou strictement croissante sur D;

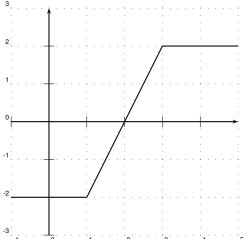
Soit f une fonction définie sur un ensemble D. On dit que f est :

- strictement croissante sur D lorsque : $\forall (x; y) \in D^2, x < y \Rightarrow f(x) < f(y)$;

$$\forall (x; \ y) \in D^2, \ x < y \Rightarrow f(x) > f(y);$$

- $\textbf{ 0} \ \, \text{croissante sur} \,\, D \,\, \text{lorsque} : \forall (x; \,\, y) \in D^2, \,\, x < y \Rightarrow f(x) \leq f(y) \,;$
- $\textbf{ 0} \ \text{ décroissante sur } D \ \text{ lorsque} : \forall (x; \ y) \in D^2, \ x < y \Rightarrow f(x) \geq f(y) \, ;$
- ullet strictement monotone sur D lorsque f est strictement décroissante ou strictement croissante sur D;
- lacktriangle monotone sur D lorsque f est croissante sur D ou décroissante sur D.

(1) La fonction dont la courbe représentative est : $\frac{3}{3}$



- Généralités
 - Domaine de définition et opérations usuelles
 - Courbe représentative d'une fonction
 - Fonctions périodiques, paires et impaires
 - Sens de variation d'une fonction
 - Fonctions majorées, minorées et bornées
- Dérivée d'une fonction
 - Nombre dérivé en un point et tangente à la courbe représentative
 - Fonction dérivée
 - Calculs de fonctions dérivées
- 3 Limites et asymptotes
 - Opérations élémentaires sur les limites
 - Quelques techniques pour lever une forme indéterminée
 - Asymptotes
- 4 Plan d'étude d'une fonction et applications
 - Plan d'étude d'une fonction
 - Inégalités classiques
 - Exemple d'application : le problème de la boîte

Soit f une fonction définie sur un ensemble D. On dit que

• f est minorée par m lorsque $\forall x \in D, f(x) \geq m$;

Soit f une fonction définie sur un ensemble D. On dit que

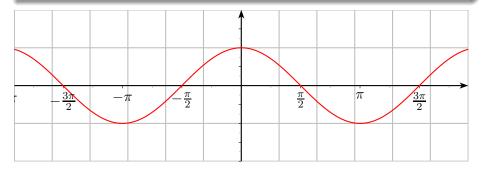
- f est minorée par m lorsque $\forall x \in D, f(x) \geq m$;
- ② f est majorée par M lorsque $\forall x \in D, f(x) \leq M$;

Soit f une fonction définie sur un ensemble D. On dit que

- f est minorée par m lorsque $\forall x \in D, f(x) \geq m$;
- ② f est majorée par M lorsque $\forall x \in D, f(x) \leq M$;
- f est bornée lorsqu' elle est minorée et majorée.

Soit f une fonction définie sur un ensemble D. On dit que

- $\ \, \textbf{ $ f$ est minorée par m lorsque $\forall x \in D, f(x) \geq m$;}$
- $oldsymbol{0}$ f est bornée lorsqu' elle est minorée et majorée.



Plan

- Généralités
- Dérivée d'une fonction
 - Nombre dérivé en un point et tangente à la courbe représentative
 - Fonction dérivée
 - Calculs de fonctions dérivées
- 3 Limites et asymptotes
- 4 Plan d'étude d'une fonction et applications

- Généralités
 - Domaine de définition et opérations usuelles
 - Courbe représentative d'une fonction
 - Fonctions périodiques, paires et impaires
 - Sens de variation d'une fonction
 - Fonctions majorées, minorées et bornées
- Dérivée d'une fonction
 - Nombre dérivé en un point et tangente à la courbe représentative
 - Fonction dérivée
 - Calculs de fonctions dérivées
- Limites et asymptotes
 - Opérations élémentaires sur les limites
 - Quelques techniques pour lever une forme indéterminée
 - Asymptotes
- Plan d'étude d'une fonction et applications
 - Plan d'étude d'une fonction.
 - Inégalités classiques
 - Exemple d'application : le problème de la boîte

$$\tau_{x_0}(t) = \frac{f(t) - f(x_0)}{t - x_0};$$

$$\tau_{x_0}(t) = \frac{f(t) - f(x_0)}{t - x_0};$$

• Cette valeur correspond au coefficient directeur de la droite D_t passant par les points $M_{x_0}(x_0;\ f(x_0))$ et $M_t(t;\ f(t))$ appartenant à la courbe représentative de f;

$$\tau_{x_0}(t) = \frac{f(t) - f(x_0)}{t - x_0};$$

- Cette valeur correspond au coefficient directeur de la droite D_t passant par les points $M_{x_0}(x_0;\ f(x_0))$ et $M_t(t;\ f(t))$ appartenant à la courbe représentative de f;
- Si, lorsque t tend vers x_0 le taux d'accroissement tend vers une limite <u>finie</u>, alors la droite D_t tend vers une droite <u>non verticale</u> que l'on appelle la tangente à la courbe représentative de f en x_0 .

$$\tau_{x_0}(t) = \frac{f(t) - f(x_0)}{t - x_0};$$

- Cette valeur correspond au coefficient directeur de la droite D_t passant par les points $M_{x_0}(x_0; f(x_0))$ et $M_t(t; f(t))$ appartenant à la courbe représentative de f;
- Si, lorsque t tend vers x₀ le taux d'accroissement tend vers une limite finie, alors la droite D_t tend vers une droite non verticale que l'on appelle la tangente à la courbe représentative de f en x_0 .

La courbe représentative d'une fonction n'admet pas forcément de tangente en un point. Par exemples :

$$\tau_{x_0}(t) = \frac{f(t) - f(x_0)}{t - x_0};$$

- Cette valeur correspond au coefficient directeur de la droite D_t passant par les points $M_{x_0}(x_0; f(x_0))$ et $M_t(t; f(t))$ appartenant à la courbe représentative de f;
- Si, lorsque t tend vers x₀ le taux d'accroissement tend vers une limite finie, alors la droite D_t tend vers une droite non verticale que l'on appelle la tangente à la courbe représentative de f en x_0 .

La courbe représentative d'une fonction n'admet pas forcément de tangente en un point. Par exemples :

(1) La fonction racine carré admet une tangente en 0, mais cette dernière est verticale. Ceci correspond à un taux d'accroissement qui tend vers $+\infty$.

$$\tau_{x_0}(t) = \frac{f(t) - f(x_0)}{t - x_0};$$

- Cette valeur correspond au coefficient directeur de la droite D_t passant par les points $M_{x_0}(x_0; f(x_0))$ et $M_t(t; f(t))$ appartenant à la courbe représentative de f;
- Si, lorsque t tend vers x₀ le taux d'accroissement tend vers une limite finie, alors la droite D_t tend vers une droite non verticale que l'on appelle la tangente à la courbe représentative de f en x_0 .

La courbe représentative d'une fonction n'admet pas forcément de tangente en un point. Par exemples :

- (1) La fonction racine carré admet une tangente en 0, mais cette dernière est verticale. Ceci correspond à un taux d'accroissement qui tend vers $+\infty$.
- (2) La fonction valeur absolue n'admet pas de tangente en 0. Elle admet, en revanche, deux demi-tangentes. Ceci correspond à un taux d'accroissement qui admet une limite différente à droite et à gauche, donc qui n'admet pas de limite.

Soit f une fonction réelle. On dit que f est dérivable en $x_0 \in D$ lorsque $\tau_{x_0}(t)$ admet une limite $\underline{\text{finie}}$ quand t tend vers x_0 .

Soit f une fonction réelle. On dit que f est dérivable en $x_0 \in D$ lorsque $au_{x_0}(t)$ admet une limite <u>finie</u> quand t tend vers x_0 . On note alors : $f'(x_0) = \lim_{t \to x_0} \frac{f(t) - f(x_0)}{t - x_0}$ et on appelle ce réel le nombre dérivé de f en x_0 .

Soit f une fonction réelle. On dit que f est dérivable en $x_0 \in D$ lorsque $au_{x_0}(t)$ admet une limite <u>finie</u> quand t tend vers x_0 . On note alors : $f'(x_0) = \lim_{t \to x_0} \frac{f(t) - f(x_0)}{t - x_0}$ et on appelle ce réel le nombre dérivé de f en x_0 .

Proposition

Si f est dérivable en x_0 , alors \mathcal{C}_f admet une tangente non verticale en ce point d'équation :

$$y = f'(x_0)(x - x_0) + f(x_0).$$

- Domaine de définition et opérations usuelles
- Courbe représentative d'une fonction
- Fonctions périodiques, paires et impaires
- Sens de variation d'une fonction
- Fonctions majorées, minorées et bornées

Dérivée d'une fonction

- Nombre dérivé en un point et tangente à la courbe représentative
- Fonction dérivée
- Calculs de fonctions dérivées
- 3 Limites et asymptotes
 - Opérations élémentaires sur les limites
 - Quelques techniques pour lever une forme indéterminée
 - Asymptotes
- 4 Plan d'étude d'une fonction et applications
 - Plan d'étude d'une fonction
 - Inégalités classiques
 - Exemple d'application : le problème de la boîte

Soit f une fonction réelle. On dit que f est dérivable sur D lorsque f est dérivable en tout point $x_0 \in D$.

Soit f une fonction réelle. On dit que f est dérivable sur D lorsque f est dérivable en tout point $x_0 \in D$. On définit ainsi une fonction qui à tout réel $x_0 \in D$ associe le nombre dérivé $f'(x_0)$.

Soit f une fonction réelle. On dit que f est dérivable sur D lorsque f est dérivable en tout point $x_0 \in D$. On définit ainsi une fonction qui à tout réel $x_0 \in D$ associe le nombre dérivé $f'(x_0)$. On appelle cette fonction la fonction dérivée de f.

Soit f une fonction réelle. On dit que f est dérivable sur D lorsque f est dérivable en tout point $x_0 \in D$. On définit ainsi une fonction qui à tout réel $x_0 \in D$ associe le nombre dérivé $f'(x_0)$. On appelle cette fonction la fonction dérivée de f. On note f' cette fonction.

Soient I un intervalle de \mathbb{R} et $f:I\to\mathbb{R}$ une fonction dérivable sur I. Alors :

(a) f est croissante sur I si et seulement si $f' \ge 0$ sur I;

- (a) f est croissante sur I si et seulement si $f' \ge 0$ sur I;
- (b) f est décroissante sur I si et seulement si f' < 0 sur I;

- (a) f est croissante sur I si et seulement si $f' \geq 0$ sur I;
- (b) f est décroissante sur I si et seulement si $f' \leq 0$ sur I;
- (c) $f' = 0 \operatorname{sur} I$

- (a) f est croissante sur I si et seulement si f' > 0 sur I;
- (b) f est décroissante sur I si et seulement si f' < 0 sur I;
- (c) f' = 0 sur I si et seulement si f est constante sur I.

- 1
- (a) f est croissante sur I si et seulement si $f' \ge 0$ sur I;
- (b) f est décroissante sur I si et seulement si $f' \leq 0$ sur I;
- (c) f' = 0 sur I si et seulement si f est constante sur I.
- 2
 - (a) Si f' > 0 sur I, alors f est strictement croissante sur I;

- 1
- (a) f est croissante sur I si et seulement si $f' \ge 0$ sur I;
- (b) f est décroissante sur I si et seulement si $f' \leq 0$ sur I;
- (c) f' = 0 sur I si et seulement si f est constante sur I.
- 2
 - (a) Si f' > 0 sur I, alors f est strictement croissante sur I;
 - (b) Si f' < 0 sur I, alors f est strictement décroissante sur I.

- 1
- (a) f est croissante sur I si et seulement si $f' \geq 0$ sur I;
- (b) f est décroissante sur I si et seulement si $f' \leq 0$ sur I;
- (c) f' = 0 sur I si et seulement si f est constante sur I.
- 2
- (a) Si f' > 0 sur I, alors f est strictement croissante sur I;
- (b) Si f' < 0 sur I, alors f est strictement décroissante sur I.
- **3**
- (a) Si $f' \geq 0$ et f' ne s'annule qu'un nombre fini de fois sur I, alors f est strictement croissante sur I;

- 1
- (a) f est croissante sur I si et seulement si $f' \ge 0$ sur I;
- (b) f est décroissante sur I si et seulement si $f' \leq 0$ sur I;
- (c) f' = 0 sur I si et seulement si f est constante sur I.
- 2
- (a) Si f' > 0 sur I, alors f est strictement croissante sur I;
- (b) Si f' < 0 sur I, alors f est strictement décroissante sur I.
- 3
- (a) Si $f' \ge 0$ et f' ne s'annule qu'un nombre fini de fois sur I, alors f est strictement croissante sur I;
- (b) Si $f' \leq 0$ et f' ne s'annule qu'un nombre fini de fois sur I, alors f est strictement décroissante sur I.

- Généralités
 - Domaine de définition et opérations usuelles
 - Courbe représentative d'une fonction
 - Fonctions périodiques, paires et impaires
 - Sens de variation d'une fonction
 - Fonctions majorées, minorées et bornées

Dérivée d'une fonction

- Nombre dérivé en un point et tangente à la courbe représentative
- Fonction dérivée
- Calculs de fonctions dérivées
- 3 Limites et asymptotes
 - Opérations élémentaires sur les limites
 - Quelques techniques pour lever une forme indéterminée
 - Asymptotes
- 4 Plan d'étude d'une fonction et applications
 - Plan d'étude d'une fonction
 - Inégalités classiques
 - Exemple d'application : le problème de la boîte

Soient f et g deux fonctions dérivables sur D. Alors :

 $\bullet \ \, \text{pour } \lambda \in \mathbb{R}, f + \lambda g \,\, \text{est d\'erivable sur } D \,\, \text{et } (f + \lambda g)' = f' + \lambda g' \,;$

Soient f et g deux fonctions dérivables sur D. Alors :

- $\bullet \ \, \text{pour} \,\, \lambda \in \mathbb{R}, f + \lambda g \,\, \text{est d\'erivable sur} \,\, D \,\, \text{et} \,\, (f + \lambda g)' = f' + \lambda g' \,;$
- ② fg est dérivable sur D et : (fg)'(x) = f'(x)g(x) + f(x)g'(x) ;

Soient f et g deux fonctions dérivables sur D. Alors :

- pour $\lambda \in \mathbb{R}$, $f + \lambda g$ est dérivable sur D et $(f + \lambda g)' = f' + \lambda g'$;
- ② fg est dérivable sur D et : (fg)'(x) = f'(x)g(x) + f(x)g'(x) ;
- lacktriangle Si g ne s'annule pas sur D, $\frac{f}{g}$ est dérivable sur D et :

$$\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}.$$

Soient f et g deux fonctions dérivables sur D. Alors :

- pour $\lambda \in \mathbb{R}$, $f + \lambda g$ est dérivable sur D et $(f + \lambda g)' = f' + \lambda g'$;
- ② fg est dérivable sur D et : (fg)'(x) = f'(x)g(x) + f(x)g'(x);
- Si g ne s'annule pas sur D, $\frac{f}{g}$ est dérivable sur D et :

$$\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}.$$

9 Si φ est dérivable sur D' et telle que $f \circ \varphi$ ait un sens, alors $f \circ \varphi$ est dérivable sur D'.

Soient f et g deux fonctions dérivables sur D. Alors :

- pour $\lambda \in \mathbb{R}$, $f + \lambda g$ est dérivable sur D et $(f + \lambda g)' = f' + \lambda g'$;
- ② fg est dérivable sur D et : (fg)'(x) = f'(x)g(x) + f(x)g'(x);
- Si g ne s'annule pas sur D, $\frac{f}{g}$ est dérivable sur D et :

$$\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}.$$

9 Si φ est dérivable sur D' et telle que $f \circ \varphi$ ait un sens, alors $f \circ \varphi$ est dérivable sur D'. De plus : $(f \circ \varphi)'(x) = \varphi'(x) \times f'(\varphi(x))$.

Soient f et g deux fonctions dérivables sur D. Alors :

- pour $\lambda \in \mathbb{R}$, $f + \lambda g$ est dérivable sur D et $(f + \lambda g)' = f' + \lambda g'$;
- ② fg est dérivable sur D et : (fg)'(x) = f'(x)g(x) + f(x)g'(x);
- Si g ne s'annule pas sur D, $\frac{f}{g}$ est dérivable sur D et :

$$\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}.$$

- **9** Si φ est dérivable sur D' et telle que $f \circ \varphi$ ait un sens, alors $f \circ \varphi$ est dérivable sur D'. De plus : $(f \circ \varphi)'(x) = \varphi'(x) \times f'(\varphi(x))$.
- **5** Les fonctions polynômiales sont dérivables sur \mathbb{R} .

Exercice

Montrer que les fonctions suivantes sont dérivables sur un ensemble D que l'on précisera et calculer leurs dérivées sur D.

(a)
$$f(x) = \frac{1}{(x^2+1)^5}$$
; (b) $g(x) = \ln\left(\frac{x+1}{x-3}\right)$;

(c)
$$h(x) = \sqrt{\frac{x-1}{x+1}}$$
; (d) $i(x) = x^4(x-1)^5(x+1)^6$.

Plan

- Généralités
- 2 Dérivée d'une fonction
- 3 Limites et asymptotes
 - Opérations élémentaires sur les limites
 - Quelques techniques pour lever une forme indéterminée
 - Asymptotes
- 4 Plan d'étude d'une fonction et applications

• Les fonctions f et g sont définies sur un ensemble $D \subset \mathbb{R}$;

- Les fonctions f et g sont définies sur un ensemble $D \subset \mathbb{R}$;
- I est un intervalle (non vide) inclus dans D;

- Les fonctions f et g sont définies sur un ensemble $D \subset \mathbb{R}$;
- I est un intervalle (non vide) inclus dans D;
- x_0 est un point de I ou une borne finie de I;

- Les fonctions f et g sont définies sur un ensemble $D \subset \mathbb{R}$;
- I est un intervalle (non vide) inclus dans D;
- x_0 est un point de I ou une borne finie de I;
- les lettres a et b représentent x_0 , $+\infty$ ou $-\infty$.

- Généralités
 - Domaine de définition et opérations usuelles
 - Courbe représentative d'une fonction
 - Fonctions périodiques, paires et impaires
 - Sens de variation d'une fonction
 - Fonctions majorées, minorées et bornées

Dérivée d'une fonction

- Nombre dérivé en un point et tangente à la courbe représentative
- Fonction dérivée
- Calculs de fonctions dérivées
- Limites et asymptotes
 - Opérations élémentaires sur les limites
 - Quelques techniques pour lever une forme indéterminée
 - Asymptotes
- Plan d'étude d'une fonction et applications
 - Plan d'étude d'une fonction.
 - Inégalités classiques
 - Exemple d'application : le problème de la boîte

$\lim_{x \to a} f(x)$	L	L	L	$+\infty$	$-\infty$	$+\infty$
$\lim_{x \to a} g(x)$	L'	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$-\infty$
$\lim_{x \to a} (f(x) + g(x))$						

$\lim_{x \to a} f(x)$	L	L	L	$+\infty$	$-\infty$	$+\infty$
$\lim_{x \to a} g(x)$	L'	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$-\infty$
$\lim_{x \to a} (f(x) + g(x))$	L + L'					

$\lim_{x \to a} f(x)$	L	L	L	$+\infty$	$-\infty$	$+\infty$
$\lim_{x \to a} g(x)$	L'	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$-\infty$
$\lim_{x \to a} (f(x) + g$	L + L'	$+\infty$				

$\lim_{x \to a} f(x)$	L	L	L	$+\infty$	$-\infty$	$+\infty$
$\lim_{x \to a} g(x)$	L'	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$-\infty$
$\lim_{x \to a} (f(x) + g(x))$	L + L'	$+\infty$	$-\infty$			

$\lim_{x \to a} f(x)$	L	L	L	$+\infty$	$-\infty$	$+\infty$
$\lim_{x \to a} g(x)$	L'	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$-\infty$
$\lim_{x \to a} (f(x) + g(x))$	L+L'	$+\infty$	$-\infty$	$+\infty$		

$\lim_{x \to a} f(x)$	L	L	L	$+\infty$	$-\infty$	$+\infty$
$\lim_{x \to a} g(x)$	L'	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$-\infty$
$\lim_{x \to a} (f(x) + g(x))$	L + L'	$+\infty$	$-\infty$	$+\infty$	$-\infty$	

$\lim_{x \to a} f(x)$	L	L	L	$+\infty$	$-\infty$	$+\infty$
$\lim_{x \to a} g(x)$	L'	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$-\infty$
$\lim_{x \to a} (f(x) + g(x))$	L+L'	$+\infty$	$-\infty$	$+\infty$	$-\infty$	FI

$\lim_{x \to a} f(x)$	L	$+\infty$	$-\infty$
$\lim_{x \to a} \lambda f(x)$			

$\lim_{x \to a} f(x)$	L	$+\infty$	$-\infty$
$\lim_{x \to a} \lambda f(x)$	λL		

$\lim_{x \to a} f(x)$	L	$+\infty$	$-\infty$
$\lim_{x \to \infty} \lambda f(x)$	\ <i>I</i>	$\lambda > 0: +\infty$	
$\lim_{x \to a} \lambda f(x)$	$\lim_{x \to a} \lambda f(x) \mid \lambda L$	$\lambda < 0 : -\infty$	

$\lim_{x \to a} f(x)$	L	$+\infty$	$-\infty$
	$\lambda > 0: +\infty$	$\lambda > 0 : -\infty$	
$\lim_{x \to a} \lambda f(x)$	\(\lambda L\)	$\lambda < 0 : -\infty$	$\lambda < 0: +\infty$

$$\infty = \pm \infty$$
.

$\lim_{x \to a} f(x)$	L	$L \neq 0$	0	∞
$\lim_{x \to a} g(x)$	L'	∞	∞	∞
$\lim_{x \to a} f(x)g(x)$				

$$\infty = \pm \infty$$
.

$\lim_{x \to a} f(x)$	L	$L \neq 0$	0	∞
$\lim_{x \to a} g(x)$	L'	∞	8	∞
$\lim_{x \to a} f(x)g(x)$	LL'			

$$\infty = \pm \infty$$
.

$\lim_{x \to a} f(x)$	L	$L \neq 0$	0	∞
$\lim_{x \to a} g(x)$	L'	∞	∞	∞
$\lim_{x \to a} f(x)g(x)$	LL'	∞		

\Rightarrow produit :

$$\infty = \pm \infty$$
.

$\lim_{x \to a} f(x)$	L	$L \neq 0$	0	∞
$\lim_{x \to a} g(x)$	L'	∞	∞	∞
$\lim_{x \to a} f(x)g(x)$	LL'	∞	FI	

$$\infty = \pm \infty$$
.

$\lim_{x \to a} f(x)$	L	$L \neq 0$	0	∞
$\lim_{x \to a} g(x)$	L'	∞	∞	∞
$\lim_{x \to a} f(x)g(x)$	LL'	∞	FI	∞

$\lim_{x \to a} f(x)$	L	$L \neq 0$	$L \neq 0$	$L \neq 0$	0	L	∞
$\lim_{x \to a} g(x)$	$L' \neq 0$	0+	0-	0	0	∞	∞
$\lim_{x \to a} \frac{f(x)}{g(x)}$							

$\lim_{x \to a} f(x)$	L	$L \neq 0$	$L \neq 0$	$L \neq 0$	0	L	∞
$\lim_{x \to a} g(x)$	$L' \neq 0$	0+	0-	0	0	∞	∞
$\lim_{x \to a} \frac{f(x)}{g(x)}$	$\frac{L}{L'}$						

$\lim_{x \to a} f(x)$	L	$L \neq 0$	$L \neq 0$	$L \neq 0$	0	L	∞
$\lim_{x \to a} g(x)$	$L' \neq 0$	0+	0-	0	0	∞	∞
$\lim_{x \to a} \frac{f(x)}{g(x)}$	$\frac{L}{L'}$	$\frac{L > 0: +\infty}{L < 0: -\infty}$					

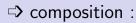
$\lim_{x \to a} f(x)$	L	$L \neq 0$	$L \neq 0$	$L \neq 0$	0	L	∞
$\lim_{x \to a} g(x)$	$L' \neq 0$	0+	0-	0	0	∞	∞
$\lim_{x \to a} \frac{f(x)}{g(x)}$	$\frac{L}{L'}$	$\begin{array}{ c c } \hline L > 0 : +\infty \\ \hline L < 0 : -\infty \\ \hline \end{array}$	$L > 0 : -\infty$ $L < 0 : +\infty$				

$\lim_{x \to a} f(x)$	L	$L \neq 0$	$L \neq 0$	$L \neq 0$	0	L	∞
$\lim_{x \to a} g(x)$	$L' \neq 0$	0+	0-	0	0	∞	∞
$\lim_{x \to a} \frac{f(x)}{g(x)}$	$\frac{L}{L'}$	$L > 0: +\infty$ $L < 0: -\infty$	$L > 0 : -\infty$ $L < 0 : +\infty$	FI			

$\lim_{x \to a} f(x)$	L	$L \neq 0$	$L \neq 0$	$L \neq 0$	0	L	∞
$\lim_{x \to a} g(x)$	$L' \neq 0$	0+	0-	0	0	∞	∞
$\lim_{x \to a} \frac{f(x)}{g(x)}$	$\frac{L}{L'}$	$\frac{L > 0 : +\infty}{L < 0 : -\infty}$	$\frac{L > 0 : -\infty}{L < 0 : +\infty}$	FI	FI		

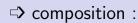
$\lim_{x \to a} f(x)$	L	$L \neq 0$	$L \neq 0$	$L \neq 0$	0	L	∞
$\lim_{x \to a} g(x)$	$L' \neq 0$	0+	0-	0	0	∞	∞
$\lim_{x \to a} \frac{f(x)}{g(x)}$	$\frac{L}{L'}$	$L > 0: +\infty$ $L < 0: -\infty$	$\begin{array}{ c c } \hline L > 0 : -\infty \\ \hline L < 0 : +\infty \\ \hline \end{array}$	FI	FI	0	

$\lim_{x \to a} f(x)$	L	$L \neq 0$	$L \neq 0$	$L \neq 0$	0	L	∞
$\lim_{x \to a} g(x)$	$L' \neq 0$	0+	0-	0	0	∞	∞
$\lim_{x \to a} \frac{f(x)}{g(x)}$	$rac{L}{L'}$	$L > 0: +\infty$ $L < 0: -\infty$	$\frac{L > 0 : -\infty}{L < 0 : +\infty}$	FI	FI	0	FI



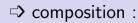
Soient f définie sur D et g définie sur D' telles que $g\circ f$ ait un sens. Alors :

$$\lim_{x \to a} g \circ f(x) = L.$$



Soient f définie sur D et g définie sur D' telles que $g\circ f$ ait un sens. Alors :

$$\lim_{x \to a} f(x) = b$$
 $\Rightarrow \lim_{x \to a} g \circ f(x) = L.$



Soient f définie sur D et g définie sur D' telles que $g\circ f$ ait un sens. Alors :

$$\lim_{\substack{x \to a \\ \lim_{x \to b} g(x) = L}} f(x) = b$$

$$\Rightarrow \lim_{x \to a} g \circ f(x) = L.$$

- Généralités
 - Domaine de définition et opérations usuelles
 - Courbe représentative d'une fonction
 - Fonctions périodiques, paires et impaires
 - Sens de variation d'une fonction
 - Fonctions majorées, minorées et bornées
- 2 Dérivée d'une fonction
 - Nombre dérivé en un point et tangente à la courbe représentative
 - Fonction dérivée
 - Calculs de fonctions dérivées
- 3 Limites et asymptotes
 - Opérations élémentaires sur les limites
 - Quelques techniques pour lever une forme indéterminée
 - Asymptotes
- Plan d'étude d'une fonction et applications
 - Plan d'étude d'une fonction
 - Inégalités classiques
 - Exemple d'application : le problème de la boîte



Limites en $\pm \infty$

Limites en $\pm \infty$

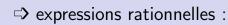
Méthode : On factorise au numérateur et au dénominateur par le terme de plus haut degré.

Limites en $\pm \infty$

Méthode : On factorise au numérateur et au dénominateur par le terme de plus haut degré.

Exercice

Déterminer
$$\lim_{x \to +\infty} \frac{x+1}{2x-1}$$
.



Limites en $x_0 \in \mathbb{R}$

Limites en $x_0 \in \mathbb{R}$

Méthode : Si, dans le cas d'une expression rationnelle, nous avons une forme indéterminée en $x_0 \in \mathbb{R}$, alors il est possible de factoriser le numérateur et le dénominateur par $x-x_0$.

Limites en $x_0 \in \mathbb{R}$

Méthode : Si, dans le cas d'une expression rationnelle, nous avons une forme indéterminée en $x_0 \in \mathbb{R}$, alors il est possible de factoriser le numérateur et le dénominateur par $x-x_0$.

Exercice

Déterminer
$$\lim_{x\to 1} \frac{x^2+x-2}{x^2-1}$$
.

Proposition

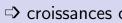
Proposition

$$\lim_{x \to +\infty} \frac{(\ln(x))^{\beta}}{x^{\alpha}} = 0$$

Proposition

$$\lim_{x \to +\infty} \frac{\left(\ln(x)\right)^{\beta}}{x^{\alpha}} = 0;$$

$$\lim_{x \to +\infty} x^{\alpha} \left| \ln(x) \right|^{\beta} = 0;$$



Proposition

- $\lim_{x \to +\infty} \frac{\left(\ln(x)\right)^{\beta}}{x^{\alpha}} = 0;$
- $\lim_{x\to 0^+} x^\alpha \left|\ln(x)\right|^\beta = 0;$
- $\lim_{x \to +\infty} \frac{x^{\alpha}}{(e^x)^{\beta}} = 0;$

Proposition

- $\lim_{x \to +\infty} \frac{\left(\ln(x)\right)^{\beta}}{x^{\alpha}} = 0;$
- $\lim_{x \to 0^+} x^{\alpha} \left| \ln(x) \right|^{\beta} = 0;$
- $\lim_{x \to +\infty} \frac{x^{\alpha}}{(e^x)^{\beta}} = 0;$
- $\lim_{\alpha \to \infty} |x|^{\alpha} (e^x)^{\beta} = 0.$

⇒ expressions avec radicaux :

Méthode : pour lever des formes indéterminées, on peut utiliser l'expression conjuguée.

> expressions avec radicaux :

Méthode : pour lever des formes indéterminées, on peut utiliser l'expression conjuguée. On rappelle que l'expression conjuguée de $\sqrt{a}+\sqrt{b}$ est $\sqrt{a}-\sqrt{b}$ et réciproquement.

⇒ expressions avec radicaux :

Méthode : pour lever des formes indéterminées, on peut utiliser l'expression conjuguée. On rappelle que l'expression conjuguée de $\sqrt{a}+\sqrt{b}$ est $\sqrt{a}-\sqrt{b}$ et réciproquement.

Exercice

Déterminer
$$\lim_{x \to +\infty} (\sqrt{x+1} - \sqrt{x})$$
.

⇒ utilisation de la dérivabilité en un point :

RAPPEL :
$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$
.

utilisation de la dérivabilité en un point :

RAPPEL:
$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$
.

Proposition

(a)
$$\lim_{x\to 0} \frac{\sin(x)}{x} = 1;$$
 (b) $\lim_{x\to 0} \frac{1-\cos(x)}{x^2} = \frac{1}{2};$

(c)
$$\lim_{x\to 0} \frac{e^x - 1}{x} = 1$$
; (d) $\lim_{x\to 0} \frac{\ln(1+x)}{x} = 1$.

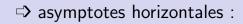
- Généralités
 - Domaine de définition et opérations usuelles
 - Courbe représentative d'une fonction
 - Fonctions périodiques, paires et impaires
 - Sens de variation d'une fonction
 - Fonctions majorées, minorées et bornées

Dérivée d'une fonction

- Nombre dérivé en un point et tangente à la courbe représentative
- Fonction dérivée
- Calculs de fonctions dérivées
- Limites et asymptotes
 - Opérations élémentaires sur les limites
 - Quelques techniques pour lever une forme indéterminée
 - Asymptotes
- Plan d'étude d'une fonction et applications
 - Plan d'étude d'une fonction.
 - Inégalités classiques
 - Exemple d'application : le problème de la boîte



On note \mathcal{C}_f la courbe représentative de f dans le repère usuel $\mathcal{R}.$



Définition:

On dit que \mathcal{C}_f admet la droite d'équation : y=b comme asymptote horizontale lorsque

⇒ asymptotes horizontales :

Définition:

On dit que \mathcal{C}_f admet la droite d'équation : y=b comme asymptote horizontale lorsque f admet b pour limite en $+\infty$ ou $-\infty$.

⇒ asymptotes verticales :

Définition:

On dit que \mathcal{C}_f admet la droite d'équation : $x=x_0$ comme asymptote verticale lorsque

⇒ asymptotes verticales :

Définition:

On dit que \mathcal{C}_f admet la droite d'équation : $x=x_0$ comme asymptote verticale lorsque f admet $+\infty$ ou $-\infty$ pour limite à droite ou à gauche de x_0 .

⇒ asymptotes obliques :

Définition:

On dit que \mathcal{C}_f admet la droite d'équation : y=ax+b comme asymptote oblique lorsque :

⇒ asymptotes obliques :

Définition:

On dit que \mathcal{C}_f admet la droite d'équation : y=ax+b comme asymptote oblique lorsque : $\lim_{x\to +\infty}(f(x)-ax-b)=0$ ou $\lim_{x\to -\infty}(f(x)-ax-b)=0$.

asymptotes obliques :

Définition :

On dit que \mathcal{C}_f admet la droite d'équation : y=ax+b comme asymptote oblique lorsque : $\lim_{x\to +\infty}(f(x)-ax-b)=0$ ou $\lim_{x\to -\infty}(f(x)-ax-b)=0$.

Exercice

Calculer $\lim_{x\to +\infty}(\sqrt{x^2+x}-x)$. En déduire que la fonction f d'expression $f(x)=\sqrt{x^2+x}-x$ admet une asymptote oblique en $+\infty$ dont on donnera une équation réduite.

Plan

- Généralités
- 2 Dérivée d'une fonction
- 3 Limites et asymptotes
- Plan d'étude d'une fonction et applications
 - Plan d'étude d'une fonction
 - Inégalités classiques
 - Exemple d'application : le problème de la boîte

- Généralités
 - Domaine de définition et opérations usuelles
 - Courbe représentative d'une fonction
 - Fonctions périodiques, paires et impaires
 - Sens de variation d'une fonction
 - Fonctions majorées, minorées et bornées

Dérivée d'une fonction

- Nombre dérivé en un point et tangente à la courbe représentative
- Fonction dérivée
- Calculs de fonctions dérivées

3 Limites et asymptotes

- Opérations élémentaires sur les limites
- Quelques techniques pour lever une forme indéterminée
- Asymptotes
- Plan d'étude d'une fonction et applications
 - Plan d'étude d'une fonction
 - Inégalités classiques
 - Exemple d'application : le problème de la boîte

(1) Déterminer le domaine de définition D.

- (1) Déterminer le domaine de définition D.
- (2) Étudier la périodicité de f:

- (1) Déterminer le domaine de définition D.
- (2) Étudier la périodicité de f: si f est T-périodique, il suffit d'étudier la fonction sur un intervalle de longueur T, par exemple $\left[-\frac{T}{2}; \frac{T}{2}\right] \cap D$.

- (1) Déterminer le domaine de définition D.
- (2) Étudier la périodicité de f: si f est T-périodique, il suffit d'étudier la fonction sur un intervalle de longueur T, par exemple $\left[-\frac{T}{2}; \frac{T}{2}\right] \cap D$. On obtiendra alors la courbe représentative de f en translatant le morceau de courbe obtenu sur $\left[-\frac{T}{2}; \frac{T}{2}\right] \cap D$.

- (1) Déterminer le domaine de définition D.
- (2) Étudier la périodicité de f: si f est T-périodique, il suffit d'étudier la fonction sur un intervalle de longueur T, par exemple $\left[-\frac{T}{2}; \frac{T}{2}\right] \cap D$. On obtiendra alors la courbe représentative de f en translatant le morceau de courbe obtenu sur $\left[-\frac{T}{2}; \frac{T}{2}\right] \cap D$.
- (3) Déterminer si f est paire ou impaire.

- (1) Déterminer le domaine de définition D.
- (2) Étudier la périodicité de f: si f est T-périodique, il suffit d'étudier la fonction sur un intervalle de longueur T, par exemple $\left[-\frac{T}{2};\ \frac{T}{2}\right]\cap D$. On obtiendra alors la courbe représentative de f en translatant le morceau de courbe obtenu sur $\left[-\frac{T}{2};\ \frac{T}{2}\right]\cap D$.
- (3) Déterminer si f est paire ou impaire. Si tel est le cas, il suffit d'étudier la fonction sur $[0; +\infty[\cap D]$, puis de compléter par symétrie (par rapport à l'axe des ordonnées ou par rapport à l'origine du repère).

- (1) Déterminer le domaine de définition D.
- (2) Étudier la périodicité de f: si f est T-périodique, il suffit d'étudier la fonction sur un intervalle de longueur T, par exemple $\left[-\frac{T}{2};\ \frac{T}{2}\right]\cap D$. On obtiendra alors la courbe représentative de f en translatant le morceau de courbe obtenu sur $\left[-\frac{T}{2};\ \frac{T}{2}\right]\cap D$.
- (3) Déterminer si f est paire ou impaire. Si tel est le cas, il suffit d'étudier la fonction sur $[0; +\infty[\cap D]$, puis de compléter par symétrie (par rapport à l'axe des ordonnées ou par rapport à l'origine du repère).
- (4) Étudier les variations de f en calculant f' et en étudiant le signe de cette expression.

- (1) Déterminer le domaine de définition D.
- (2) Étudier la périodicité de f: si f est T-périodique, il suffit d'étudier la fonction sur un intervalle de longueur T, par exemple $\left[-\frac{T}{2};\ \frac{T}{2}\right]\cap D$. On obtiendra alors la courbe représentative de f en translatant le morceau de courbe obtenu sur $\left[-\frac{T}{2};\ \frac{T}{2}\right]\cap D$.
- (3) Déterminer si f est paire ou impaire. Si tel est le cas, il suffit d'étudier la fonction sur $[0; +\infty[\cap D]$, puis de compléter par symétrie (par rapport à l'axe des ordonnées ou par rapport à l'origine du repère).
- (4) Étudier les variations de f en calculant f' et en étudiant le signe de cette expression.
- (5) Calculer les limites aux bords du domaine d'étude pour dresser le tableau de variations de f.

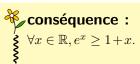
- (1) Déterminer le domaine de définition D.
- (2) Étudier la périodicité de f: si f est T-périodique, il suffit d'étudier la fonction sur un intervalle de longueur T, par exemple $\left[-\frac{T}{2};\ \frac{T}{2}\right]\cap D$. On obtiendra alors la courbe représentative de f en translatant le morceau de courbe obtenu sur $\left[-\frac{T}{2};\ \frac{T}{2}\right]\cap D$.
- (3) Déterminer si f est paire ou impaire. Si tel est le cas, il suffit d'étudier la fonction sur $[0; +\infty[\cap D]$, puis de compléter par symétrie (par rapport à l'axe des ordonnées ou par rapport à l'origine du repère).
- (4) Étudier les variations de f en calculant f' et en étudiant le signe de cette expression.
- (5) Calculer les limites aux bords du domaine d'étude pour dresser le tableau de variations de f.
- (6) Déterminer les éventuelles asymptotes et les tangentes aux points figurant sur le tableau de variations.

- (1) Déterminer le domaine de définition D.
- (2) Étudier la périodicité de f: si f est T-périodique, il suffit d'étudier la fonction sur un intervalle de longueur T, par exemple $\left[-\frac{T}{2}; \ \frac{T}{2}\right] \cap D$. On obtiendra alors la courbe représentative de f en translatant le morceau de courbe obtenu sur $\left[-\frac{T}{2}; \ \frac{T}{2}\right] \cap D$.
- (3) Déterminer si f est paire ou impaire. Si tel est le cas, il suffit d'étudier la fonction sur $[0; +\infty[\cap D]$, puis de compléter par symétrie (par rapport à l'axe des ordonnées ou par rapport à l'origine du repère).
- (4) Étudier les variations de f en calculant f' et en étudiant le signe de cette expression.
- (5) Calculer les limites aux bords du domaine d'étude pour dresser le tableau de variations de f.
- (6) Déterminer les éventuelles asymptotes et les tangentes aux points figurant sur le tableau de variations.
- (7) Tracer la courbe représentative de f avec les éventuelles asymptotes ou tangentes aux points remarquables.

- Généralités
 - Domaine de définition et opérations usuelles
 - Courbe représentative d'une fonction
 - Fonctions périodiques, paires et impaires
 - Sens de variation d'une fonction
 - Fonctions majorées, minorées et bornées
- 2 Dérivée d'une fonction
 - Nombre dérivé en un point et tangente à la courbe représentative
 - Fonction dérivée
 - Calculs de fonctions dérivées
- 3 Limites et asymptotes
 - Opérations élémentaires sur les limites
 - Quelques techniques pour lever une forme indéterminée
 - Asymptotes
- 4 Plan d'étude d'une fonction et applications
 - Plan d'étude d'une fonction
 - Inégalités classiques
 - Exemple d'application : le problème de la boîte

Pour tout x > -1, $\ln(1+x) \le x$.

Pour tout x > -1, $\ln(1+x) \le x$.



Pour tout x > -1, $\ln(1+x) \le x$.

conséquence:

 $\forall x\in\mathbb{R}, e^x\geq 1+x.$ En effet, en appliquant l'inégalité précédente en e^x , nous obtenons : $\ln(e^x)\leq e^x-1$

Pour tout x > -1, $\ln(1+x) \le x$.

conséquence:

 $\forall x \in \mathbb{R}, e^x \geq 1+x. \text{ En effet, en appliquant l'inégalité précédente en } e^x, \text{ nous obtenons} : \ln(e^x) \leq e^x - 1 \Leftrightarrow x \leq e^x - 1 \Leftrightarrow x + 1 \leq e^x.$

- Généralités
 - Domaine de définition et opérations usuelles
 - Courbe représentative d'une fonction
 - Fonctions périodiques, paires et impaires
 - Sens de variation d'une fonction
 - Fonctions majorées, minorées et bornées

Dérivée d'une fonction

- Nombre dérivé en un point et tangente à la courbe représentative
- Fonction dérivée
- Calculs de fonctions dérivées

3 Limites et asymptotes

- Opérations élémentaires sur les limites
- Quelques techniques pour lever une forme indéterminée
- Asymptotes

4 Plan d'étude d'une fonction et applications

- Plan d'étude d'une fonction
- Inégalités classiques
- Exemple d'application : le problème de la boîte

Pour fabriquer une boîte sans couvercle, on dispose d'une feuille carrée (en carton) dont le côté est de longueur a ($a \neq 0$). À chacun des quatre angles, on découpe un carré de longueur x et on rabat les quatre angles perpendiculairement. On cherche x pour obtenir une boîte de volume maximal.

