Test de cours sur les espaces vectoriels

NOTE:

1.	Complétez : « Pour E muni d'une loi de composition interne notée « + », et d'une loi de composition externe, notée « . », on dit que $(E,+,.)$ est un espace vectoriel lorsque : (i) $(E,+)$ est
	(ii) Pour tous $(\overrightarrow{u}; \overrightarrow{v}) \in E^2$ et $(\lambda; \mu) \in \mathbb{K}^2$; $\lambda.(\overrightarrow{u} + \overrightarrow{v}) = \dots = \lambda.\overrightarrow{u} + \mu.\overrightarrow{u}$ (distributivité mixte); $\dots = \lambda.\overrightarrow{u} + \mu.\overrightarrow{u}$ (associativité mixte);
2.	Soient $(E,+,.)$ un espace vectoriel et $F\subset E.$ Quand dit-on que F est un sous-espace vectoriel de E ?
3.	On note $F = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3/x + y + z = 0 \right\}$ et $G = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3/x - y + z = 0 \right\}$.
	(a) Montrer que F est un sous-espace vectoriel de \mathbb{R}^3
	(b) Montrez que $F \cap G$ est une droite vectorielle et en déterminer une famille génératrice.
4.	Soient E un espace vectoriel E de loi de composition interne notée « $+$ »et F et G deux sous-espaces vectoriels de E .
	(a) Quand dit-on que F et G sont supplémentaires dans E ?
5.	Étudier la liberté de la famille : $\mathcal{F} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \\ 4 \end{pmatrix}$. Précisez une relation de liaison dans le cas où la famille est liée.