PROGRAMME DE COLLES 9

L'examinateur pourra choisir une question de cours et/ou un (ou une partie de) exercice parmi les exercices des fiches méthodes (cf. ci-après)

Questions de cours

- 1. Énoncer et démontrer la propriété de linéarité de l'intégrale;
- 2. Énoncer et démontrer les formules d'intégration par parties;
- 3. Énoncé et démonstration de la formule de changement de variable;
- 4. Définition de nombres premiers et montrer que tout nombre entier admet au moins un diviseur premier;
- 5. Montrer que si r est le reste de la division euclidienne de a par $b \neq 0$, alors : $\operatorname{pgcd}(a,b) = \operatorname{pgcd}(b,r)$.
- 6. Énoncés et démonstrations des propriétés de la fonction partie entière;
- 7. Définition de nombres rationnels et de nombres irrationnels. Montrer que $\sqrt{2}$ est irrationnel.

Thèmes de la colle

PRIMITIVES ET CALCUL INTÉGRAL:

- <u>Primitives</u>: Définition, existence de primitives d'une fonction continue sur un intervalle, ensemble de <u>l'ensemble</u> des primitives d'une fonction continue sur un intervalle;
- Intégrales : Intégrale d'une fonction continue sur un segment, lien avec le calcul de primitives;
- <u>Calculs pratiques de primitives ou d'intégrales :</u> Primitives usuelles, primitives de formes usuelles, intégration par parties, formule de changement de variable, primitives ou intégrales usuelles :

$$\int \cos(wx)e^{\alpha x} dx, \ (w; \ \alpha) \in \mathbb{R}^2, \int \cos^m(x)\sin^n(x) dx, \int \frac{1}{ax^2 + bx + c} dx, \ a \neq 0.$$

Équations différentielles linéaires d'ordre 1 : Cas de l'équation normalisée : structure de l'ensemble des solutions de l'équation homogène, recherche de solutions particulières par la méthode de variation de la constante. Résolution du cas général en se ramenant à l'équation normalisée sur chaque intervalle où le coefficient dominant ne s'annule pas. Problème de Cauchy.

NOMBRES RÉELS ET PRINCIPE DE RÉCURRENCE :

- Sous-ensembles de nombres réels : partie majorée, minorée, bornée, maximum et minimum d'un ensemble, bornes supérieures et bornes inférieures d'un ensemble, propriété de la borne supérieure.
- Entiers naturels et raisonnement par récurrence : propriété des entiers naturels, récurrence faible à pas fixé et récurrence forte.
- Arithmétique dans ℕ : divisibilité, diviseurs et multiples, propriétés de la relation de divisibilité, division euclidienne, nombres premiers, décomposition en facteurs premiers, pgcd et ppcm de deux nombres, calcul du pgcd à l'aide de l'algorithme d'Euclide.
- Nombres rationnels, décimaux et réels : nombres rationnels : définition, existence, propriétés algébriques, nombres décimaux : définition et propriétés algébriques.
- Partie entière d'un nombre réel : définition, courbe représentative, principales propriétés, approximations d'un nombre réel à la précision 10^{-n} , expression d'approximations décimales par défaut et par excès d'un nombre à la précision 10^{-n} à l'aide de la fonction partie entière.

Prévisions pour la semaine suivante

Nombres entiers, réels et rationnels, suites de nombres.

Chapitre 10 -

Primitives et équations différentielles linéaires d'ordre 1

Le point sur les méthodes :

À l'issue de ce chapitre vous devez savoir :

- -M1- Maîtriser le calcul de primitives;
- -M2- Réaliser une intégration par parties;
- -M3- Faire un changement de variable;
- -M4- Résoudre une équation différentielle linéaire d'ordre 1 à coefficients quelconques;

Exercice 1 : [-M1-] Calculer les intégrales suivantes :

(a)
$$\int_{1}^{6} t^2 dt$$

(b)
$$\int_{1}^{4} \sqrt{t} \, dt$$

(c)
$$\int_{1}^{4} \frac{1}{\sqrt{t}} dt$$

(d)
$$\int_0^4 x \sqrt{x} \, dx$$
;

(a)
$$\int_{1}^{6} t^{2} dt$$
; (b) $\int_{1}^{4} \sqrt{t} dt$; (c) $\int_{1}^{4} \frac{1}{\sqrt{t}} dt$; (d) $\int_{0}^{4} x \sqrt{x} dx$; (e) $\int_{0}^{\frac{\pi}{3}} \tan(x) dx$; (f) $\int_{0}^{\frac{\pi}{3}} \tan^{2}(x) dx$.

$$\text{(f) } \int_0^{\frac{\pi}{3}} \tan^2(x) \, dx$$

Exercice 2 : [-M1-] Déterminer une primitive des fonctions suivantes sur l'intervalle proposé :

(a)
$$\frac{1}{x+1} \sin I =]-1; +\infty[$$

(b)
$$\frac{1}{(1+x)^2} \operatorname{sur} I =]-1; +\infty[;$$

(c)
$$\frac{x}{1+x^2} \operatorname{sur} I = \mathbb{R};$$

$$\begin{array}{ll} \text{(a)} \ \frac{1}{x+1} \, \text{sur} \ I =] -1; \ +\infty[; \\ \text{(b)} \ \frac{1}{(1+x)^2} \, \text{sur} \ I =] -1; \ +\infty[; \\ \text{(c)} \ \frac{x}{1+x^2} \, \text{sur} \ I = \mathbb{R}; \\ \text{(e)} \ \sqrt{2x+1} \, \text{sur} \ I = \big] -\frac{1}{2}; \ +\infty\big[; \\ \text{(f)} \ \sin(\omega x + \varphi) \ \text{avec} \ \omega \neq 0. \ I = \mathbb{R}; \\ \text{(g)} \ \sin^2(x) \, \text{sur} \ \mathbb{R}. \end{array}$$

(e)
$$\sqrt{2x+1} \, \text{sur } I = \left] -\frac{1}{2}; +\infty \right[$$

$$(2x+1)^{\circ}$$
(f) $\sin(\omega x + \omega)$ avec $\omega \neq 0$ $I = \mathbb{R}$

Exercice 3: [-M2-] Calculer:

(a)
$$\int_0^1 x e^x dx$$
; (b) $\int_0^1 Arctan(x) dx$.

Exercice 4: Montrer que

$$\int_0^{\frac{\pi}{2}} \cos^4(t) \, dt = 3\pi/16$$

Exercice 5: Calculer $\int_0^1 \frac{1}{x^2 + x + 1} dx$ puis $\int_0^1 \frac{2x}{x^2 + x + 1} dx$.

Exercice 6: [-M3-] Calculer $I = \int_0^1 \frac{dx}{e^x + 1}$ en posant $u = e^x$.

Exercice 7: [-M4-] Résoudre: $y' + \frac{1-x}{x}y = e^x \text{ sur }]0; +\infty[.$

Exercice 8 : [-M4-] Résoudre l'équation différentielle : $x^2y' + xy = 1$.

* * * *

Chapitre 11 -

Nombres entiers, rationnels et réels

Le point sur les méthodes :

À l'issue de ce chapitre vous devez savoir :

- -M1- Maîtriser la notion de borne supérieure;
- -M2- Réaliser un raisonnement par récurrence;
- -M3- Maîtriser la relation de divisibilité ainsi que la notion de nombres premiers;
- -M4- Maîtriser l'algorithme du calcul du pgcd de deux entiers;
- -M5- Maîtriser les différences entre entiers, rationnels, décimaux et réels;
- -M6- Manipuler la partie entière d'un nombre réel.

Exercice 1 : [-M1-] Pour les ensembles A et fonctions f ci-dessous, déterminer : $\sup_{x \in A} \{f(x)\}$ puis préciser la valeur du maximum lorsqu'il existe :

1.
$$f(x) = \begin{cases} x \text{ si } x \in [0; \ 1[\\ 0 \text{ si } x = 1 \end{cases}$$
 et $A = [0; \ 1]$.

2.
$$f(x) = \frac{x}{x^2 + 1}$$
 et $A = \mathbb{R}$.

Exercice 2 : [-M2-] Montrer par récurrence que pour tout
$$n \in \mathbb{N}^*$$
, $\sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6}$.

Exercice 3: [-M2-] Montrer que pour tout entier naturel $n \ge \dots, \mathcal{P}(n)$ « $2^n \ge n + 2$ »est vraie.

Exercice 4: [-M2-] Soit (U_n) telle que : $U_0=0, U_1=1$ et pour tout $n \ge 0, U_{n+2}=2U_{n+1}-U_n$. Conjecturer une expression simple de U_n pour tout $n \in \mathbb{N}$ puis montrez par récurrence votre conjecture.

Exercice 5 : [-M2-] Soit (U_n) telle que : $U_0 = 1, U_1 = -3$ et pour tout $n \ge 0$, $U_{n+2} + 2U_{n+1} + U_n = 0$. Montrer que pour tout $n \in \mathbb{N}$, $U_n = (-1)^n (2n+1)$.

Exercice 6: [-M2-] On pose $a_0 = 1$ puis pour tout $n \in \mathbb{N}$

$$a_{n+1} = \sum_{k=0}^{n} \binom{n}{k} a_{n-k} a_k$$

Montrer par récurrence que pour tout entier naturel n $a_n = n!$.

Exercice 7: [-M3-] Soit $n = \sum_{i=0}^{k} a_i 10^i$, $a_i \in \{0; \dots; 9\}$, sa décomposition en base 10. Alors montrer que n est divisible par 4 si et seulement si 4 divise $10a_1 + a_0$.

Exercice 8: [-M3-] Soit n un entier naturel supérieur ou égal à 5.

- 1. En cherchant les restes possibles de la division euclidienne de n par 3, montrer que n(n-5)(n+5) est un multiple de 3.
- 2. En déduire que 6|n(n-5)(n+5).

Exercice 9: [-M3-] Donner la décomposition en facteurs premiers des nombres suivants: 375; 777 000.

Exercice 10 : [-M4-] Calculer de deux façons différentes le pgcd de (420, 198).

Exercice 11: [-M5-] On considère $x \in \mathbb{Q}$. En raisonnant par l'absurde, montrer que $x + \sqrt{2} \in \mathbb{R} - \mathbb{Q}$.

Exercice 12: [-M6-] Résoudre l'équation $\lfloor x + \frac{1}{2} \rfloor = 2 \lfloor x \rfloor$.

* * * * *