TD 12 -

### Suites de nombres

#### LES INCONTOURNABLES

### **Expressions explicites**

Exercice 1: [corrigé] On considère la suite définie par :  $U_0 = 1$  et pour tout entier naturel n,  $U_{n+1} = \frac{U_n - 4}{U_n - 3}.$ 

- (Q 1) Montrer par récurrence que pour tout entier naturel n,  $U_n$  est défini et  $U_n < 2$ .
- (Q 2) On pose :  $V_n = \frac{1}{U_n 2}$ . Montrer que  $(V_n)$  est arithmétique et préciser sa raison.
- (Q 3) Donner une expression simple de  $V_n$  en fonction de n. En déduire une expression simple de  $U_n$  en fonction de n, puis calculer  $\lim_{n\to +\infty} U_n$ .

#### Exercice 2 : On considère la suite vérifiant la relation :

$$\forall n \in \mathbb{N}, u_{n+1} = \frac{u_n}{u_n + 2}; u_0 = 1$$

- (Q 1) Montrer que  $\forall n \in \mathbb{N}, u_n > 0$ .
- (Q 2) On pose alors  $v_n=\frac{1}{u_n}$ . Montrer que la suite de terme général  $(v_n)_{n\geq 0}$  est une suite arithméticogéométrique et donner son expression explicite.
- (Q 3) En déduire celle du terme général  $u_n$  puis son comportement asymptotique.

On cherche à déterminer toutes les suites  $(u_n)$  telles que :  $u_0 = 1$ ;  $u_1 = \frac{1}{4}$  et Exercice 3: [corrigé] pour tout  $n \in \mathbb{N}$ , on a la relation :  $u_{n+2} - 4u_{n+1} + 4u_n = 3^n$ .

- (Q 1) Vérifier que la suite de terme général  $3^n$  satisfait cette relation.
- (Q 2) On pose  $\forall n \in \mathbb{N}, v_n = u_n 3^n$ . Trouver une relation satisfaite par  $(v_n)$  et en déduire l'expression explicite de  $(v_n)$ .
- (Q 3) En déduire celle de  $(u_n)$ .

#### Manipulation de la définition de la limite

Exercice 4 : En utilisant la définition de la limite d'une suite, montrer que :

(a) 
$$\lim_{n \to +\infty} \frac{n}{n+1} = 1$$
; (b)  $\lim_{n \to +\infty} \ln\left(1 + \frac{1}{n}\right) = 0$ ; (c)  $\lim_{n \to +\infty} \sqrt{n+1} - \sqrt{n} = 0$ ; (d)  $\lim_{n \to +\infty} \sqrt{n^2 + 3n + 1} = +\infty$ .

Exercice 5 : [corrigé] (\*) (Théorème de Césaro) Soit  $(u_n)$  une suite convergeant vers 0 et pour tout  $n\in\mathbb{N}, v_n=\frac{\displaystyle\sum_{k=0}u_k}{n+1}.$  On note  $\varepsilon$  un nombre réel strictement positif.

- (Q 1) Justifier l'existence de  $N_1 \in \mathbb{N}$ , tel que pour tout  $n \geq N_1$ ,  $|u_n| \leq \frac{\varepsilon}{2}$  et d'un réel positif M tel que pour tout  $n \in \mathbb{N}$ ,  $|u_n| \leq M$ .
- (Q 2) En déduire qu'à partir d'un certain rang à préciser,  $|v_n| \leq \frac{M(N_1+1)}{n+1} + \frac{\varepsilon}{2}$ .
- (Q 3) En déduire que  $(v_n)$  converge vers 0.

### Suites à valeurs complexes

**Exercice 6 :** [corrigé] Soient  $(u_n)_{n\in\mathbb{N}}$  et  $(v_n)_{n\in\mathbb{N}}$  les suites réelles vérifiant :

$$\begin{cases} u_{n+1} &= \frac{1}{2} (u_n - v_n) + 2 \\ v_{n+1} &= \frac{1}{2} (u_n + v_n) - 1 \end{cases} \text{ et } u_0 = -4; \ v_0 = -2.$$

- (Q 1) Montrer que la suite complexe de terme général :  $z_n = u_n + iv_n$  converge vers un complexe que l'on déterminera.
- (Q 2) En déduire que les suites  $(u_n)_{n\in\mathbb{N}}$  et  $(v_n)_{n\in\mathbb{N}}$  convergent vers un réel que l'on déterminera.

### Utilisation des théorèmes généraux

**Exercice 7 :** [indications] En utilisant le théorème d'encadrement, montrer que les suites de termes généraux suivants convergent vers un réel que l'on précisera :

(a) 
$$\sum_{k=1}^{n} \frac{k}{n^2 + k}$$
; (b)  $\sum_{k=1}^{n} \frac{n}{\sqrt{n^4 + k}}$ ;

Exercice 8: [corrigé] Densité de  $\mathbb Q$  dans  $\mathbb R$ . Soient  $x \in \mathbb R$  et  $\forall n \in \mathbb N^*; x_n = \frac{\lfloor nx \rfloor}{n}$ . Montrer que  $\forall n \in \mathbb N, x_n \in \mathbb Q$  et que  $(x_n)$  converge vers x.

**Exercice 9:** [corrigé] On définit deux suites u et v par :  $u_0 = 1$ ,  $v_0 = 12$  et  $\begin{cases} u_{n+1} = \frac{1}{3}(u_n + 2v_n) \\ v_{n+1} = \frac{1}{4}(u_n + 3v_n) \end{cases}$ .

- (Q 1) Montrer que la suite définie par  $w_n=v_n-u_n$  est géométrique dont on précisera la raison et calculer  $\lim_{n\to+\infty}w_n$ .
- (Q 2) Montrer que  $(u_n)$  est croissante,  $(v_n)$  est décroissante, puis que les deux suites convergent vers une même limite  $\ell$ .
- (Q 3) On considère la suite définie par  $t_n = 3u_n + 8v_n$ . Montrer que  $(t_n)$  est constante. En déduire  $\ell$ .

Exercice 10: [corrigé] On considère  $(S_n)_{n\in\mathbb{N}^*}$  définie par :  $\forall n\geq 1, S_n=\sum\limits_{k=1}^n\frac{(-1)^k}{k}$ . Montrer que les suites  $(S_{2n})_{n\in\mathbb{N}^*}$  et  $(S_{2n+1})_{n\in\mathbb{N}^*}$  sont adjacentes. En déduire que  $(S_n)_{n\in\mathbb{N}^*}$  converge.

#### Suites récurrentes - introduction

**Exercice 11:** [corrigé] On considère  $(u_n)$  telle que :  $u_0 \in [0;1]$  et pour tout  $n \in \mathbb{N}$ ,  $u_{n+1} = \frac{u_n + u_n^2}{2}$ .

- (Q 1) Montrer que pour tout entier naturel n,  $u_n \in [0; 1]$ .
- (Q 2) Montrer que  $(u_n)$  est décroissante. En déduire que  $(u_n)$  converge vers un réel que l'on précisera.

**Exercice 12:** [corrigé] Soit la suite définie par récurrence par  $u_0 = 0$  et  $\forall n \in \mathbb{N}, u_{n+1} = \sqrt{2 + u_n}$ .

- (Q 1) Montrer que pour tout entier naturel  $n \ge 1$ ,  $u_n > 0$  et que  $(u_n)$  est bien définie.
- (Q 2) Montrer que pour tout  $n \in \mathbb{N}$ ,  $|u_{n+1} 2| \leq \frac{1}{2}|u_n 2|$  (on pourra faire apparaître une quantité conjuguée).
- (Q 3) En déduire que pour tout  $n \in \mathbb{N}, |u_n 2| \leq \left(\frac{1}{2}\right)^{n-1}$ .
- (Q 4) Montrer que la suite  $(u_n)_{n\in\mathbb{N}}$  converge et préciser sa limite.

### POUR S'ENTRAÎNER

## **Expressions explicites**

Exercice 13: [corrigé] Déterminer le terme général de la suite définie par :  $\forall n \in \mathbb{N}, u_n \neq 0$  et  $\forall n \in \mathbb{N}, \frac{1}{u_{n+2}} = \frac{4}{u_{n+1}} - \frac{8}{u_n}$ .

## Manipulations de la définition de la limite

**Exercice 14 :** [corrigé] En utilisant la définition de la limite, montrer que toute suite d'entiers naturels qui converge vers 0 est une suite stationnaire.

### Suites à valeurs complexes.

**Exercice 15**: Soit la suite  $(z_n)$  définie par  $z_0 = \frac{2i}{5}$  et la relation :  $\forall n \in \mathbb{N}, \ z_{n+1} = \frac{i}{2}z_n + 1$ .

- (Q 1) En utilisant la technique sur les suites arithmético-géométriques, montrer que  $\forall n \in \mathbb{N}; z_n = \ell + \left(\frac{i}{2}\right)^n \frac{-4}{5}$  où  $\ell$  est un nombre complexe que l'on déterminera.
- (Q 2) En déduire une majoration de  $|z_n \ell|$  puis que  $(z_n)$  converge vers ce nombre réel  $\ell$ .

Exercice 16 : [corrigé] Étudier la convergence des suites suivantes d'expressions suivantes :

(a) 
$$u_n = \frac{i^n}{n^2}$$
; (b)  $v_n = \frac{n}{1+in}$ ; (c)  $w_n = e^{\frac{3n+i}{n}}$ .

Exercice 17 : [corrigé] On considère la suite complexe de terme général  $u_n$  définie par

$$u_0 \in \mathbb{C}; \forall n \in \mathbb{N}; u_{n+1} = \frac{1}{3} \left( 2u_n - \overline{u_n} \right)$$

Étudier le comportement asymptotique de la suite  $\left(u_n\right)_{n\in\mathbb{N}}$ .

# Utilisation des théorèmes généraux

**Exercice 18 :** [corrigé] Étudier la convergence des suites de termes généraux suivants, et donner leur limite éventuelle :

(a) 
$$u_n = \frac{n + (-1)^n}{n - (-1)^n};$$
 (b)  $u_n = \frac{2^n + 3^n}{2^n - 3^n};$  (c)  $u_n = \sqrt{n+1} - \sqrt{n};$  (e)  $u_n = \frac{\sin n}{n^\alpha} (\alpha > 0);$  (f)  $u_n = \left(\frac{1}{n}\right)^{\frac{1}{\ln n}};$  (g)  $u_n = n^2 + \sin(n);$  (h)  $u_n = (-1)^n + n;$  (i)  $u_n = \frac{n(-1)^n}{n^2 + 1};$  (j)  $u_n = n^{-\ln n}.$ 

**Exercice 19:** Soit  $x \in \mathbb{R}$ . Montrer que la suite définie par :  $u_n = \frac{1}{n^2} \sum_{k=1}^n \lfloor kx \rfloor$  converge vers un réel à préciser.

Exercice 20 : [corrigé] Étudier si les suites d'expressions suivantes convergent :

(a) 
$$\forall n \in \mathbb{N}^*; u_n = (-1)^n + \frac{1}{n};$$
 (b)  $\forall n \in \mathbb{N}^*; v_n = \frac{1}{n} + \cos(\frac{n\pi}{8}).$ 

**Exercice 21:** [corrigé] Soit  $(x_n)$  une suite telle que ses suites extraites  $(x_{2n})$ ,  $(x_{2n+1})$  et  $(x_{3n})$  convergent. Montrer que  $(x_n)$  converge.

**Exercice 22:** [corrigé] On définit une suite  $(u_n)$  en posant  $u_0 = 1$  et pour tout  $n \in \mathbb{N}$  :  $u_{n+1} = 1 + \frac{1}{u_n}$ . On note I = [1; 2].

- (Q 1) Démontrer que la suite  $(u_n)$  est bien définie et est incluse dans l'intervalle I.
- (Q 2) Pour tout  $x \in I$ , on pose :  $f(x) = 1 + \frac{1}{x}$  et  $g = f \circ f$ . Justifier que f est strictement décroissante sur I et que g est strictement croissante sur I.
- (Q 3) Vérifier que  $u_{n+2}=g(u_n)$  et en déduire que les suites extraites  $(u_{2n})$  et  $(u_{2n+1})$  sont convergentes. Préciser leurs limites.
- (Q 4) Démontrer que la suite  $(u_n)$  est convergente et donner sa limite.

Exercice 23: [corrigé] Soient  $(u_n)_{n\in\mathbb{N}}$  et  $(v_n)_{n\in\mathbb{N}}$  définies par  $u_0=2\in\mathbb{R}, v_0=1\in\mathbb{R}$ . Soit :  $\forall n\in\mathbb{N}, \begin{cases} u_{n+1}=\frac{u_n+v_n}{2} \\ v_{n+1}=\sqrt{u_nv_n} \end{cases}$ . Montrer que ces suites sont adjacentes.

### Suites récurrentes - introduction

**Exercice 24:** [corrigé] Soit  $u_0 = 1$  et pour tout entier naturel  $n, u_{n+1} = u_n e^{-u_n}$ .

- (Q 1) Montrer que  $(u_n)$  est décroissante.
- (Q 2) En déduire que  $(u_n)$  converge vers un réel  $\ell$  que l'on précisera.
- (Q 3) On pose :  $S_n = \sum_{k=0}^n u_k$ . Montrer que :  $\forall n \in \mathbb{N}, \ u_{n+1} = u_0 e^{-S_n}$ . En déduire que  $(S_n)$  admet une limite que l'on précisera.

**Exercice 25:** [corrigé] On considère la suite définie par  $u_0=0$  et pour tout  $n\in\mathbb{N}$ ,  $u_{n+1}=\frac{1}{5}(u_n^3-1)$ . On note f la fonction définie sur  $\mathbb{R}$  par  $f(x)=\frac{1}{5}(x^3-1)$ .

- (Q 1) Montrer que :  $\forall x \in [-1; 1], f(x) \in [-1; 1]$ . En déduire par récurrence que :  $\forall n \in \mathbb{N}, u_n \in [-1; 1]$ .
- (Q 2) Vérifier que f est croissante sur [-1; 1]. En déduire par récurrence que  $(u_n)$  est décroissante.
- (Q 3) Montrer que  $(u_n)$  converge vers un réel  $\ell$  et vérifier que  $f(\ell) = \ell$ .
- (Q 4) Montrer que  $\forall n \in \mathbb{N}$ ,  $|u_{n+1} \ell| \leq \frac{3}{5}|u_n \ell|$ . En déduire :  $\forall n \in \mathbb{N}, |u_n \ell| \leq \left(\frac{3}{5}\right)^n$ .
- (Q 5) Déterminer un entier  $n_0$  pour lequel  $u_{n_0}$  est une valeur approchée de  $\ell$  à la précision  $10^{-2}$ . En déduire une valeur approchée de  $\ell$  à la précision  $10^{-2}$ .

### Une suite implicite

**Exercice 26:** [corrigé] Soit  $f: x \mapsto x^3 - 3x + 1$ .

- (Q 1) Montrer que :  $\forall n \in \mathbb{N}^*, \exists ! x_n \in [0; 1[ / f(x_n) = \frac{1}{n}])$
- (Q 2) Montrer que la suite  $(x_n)_{n\geq 1}$  est croissante et majorée par 1.
- (Q 3) En déduire que cette suite converge vers un réel  $\ell \in [0; 1]$ .
- (Q 4) Que représente ce nombre  $\ell$  pour la fonction f?

#### **Divers**

**Exercice 27 :** [corrigé] Soit  $(u_n)$  une suite réelle. Traduire les assertions suivantes à l'aide des quantificateurs :

(Q 1) La suite  $(u_n)$  est croissante à partir d'un certain rang. (Q 2) La suite  $(u_n)$  n'est pas croissante. (Q 3) La suite  $(u_n)$  ne converge pas vers 0.

#### Modélisation

Exercice 28: Le flocon de VON KOCH s'obtient en partant d'un triangle équilatéral de côté 1, le premier polygone  $\mathcal{P}_0$ . Chaque côté est ensuite divisé en trois parties égales. On construit sur le segment du milieu de chacun de ces côtés un nouveau triangle équilatéral à l'extérieur du grand triangle. On obtient un nouveau polygone  $\mathcal{P}_1$ . On réitère cette procédure autant de fois que l'on souhaite. A l'étape n on a obtenu un polygone  $\mathcal{P}_n$  qui ressemble de plus en plus à un flocon de neige.



Quelle est la longueur de cette ligne polygonale  $\mathcal{P}_n$ ? Quelle est son comportement asymptotique? Qu'en est-il de l'aire de ce polygone?

**Exercice 29 :** On considère un triangle équilatéral de côté 1. À chaque étape, on construit dans chaque triangle équilatéral non coloré, le triangle équilatéral coloré (en noir) ayant pour sommets les milieux des côtés. Les schémas suivants montrent les étapes 1 à 3. On note  $p_n$  et  $a_n$  le périmètre et l'aire de la surface colorée à l'étape n.

Étudier les limites éventuelles des deux suites  $(p_n)$  et  $(a_n)$ .





Exercice 7:

- (a) Utiliser l'encadrement :  $\forall k \in \llbracket 1; \ n \rrbracket, \ \frac{k}{n^2+n} \leq \frac{k}{n^2+k} \leq \frac{k}{n^2+k}$  =  $\frac{k}{n^2+1}$ , puis sommer.
- (b) Utiliser l'encadrement :  $\forall k \in [1; n], \frac{k}{\sqrt{n^4 + n}} \le \frac{k}{\sqrt{n^4 + k}} \le \frac{k}{\sqrt{n^4 + 1}}$ , puis sommer.

#### Correction de l'exercice 1 :

- (Q 1) On note  $P_n$  la propriété «  $U_n$  est défini et  $U_n < 2$  »avec  $n \in \mathbb{N}$ .
  - la propriété est vraie au rang 0 puisque  $U_0$  existe et a pour valeur  $U_0 = 1 < 2$ .
  - Supposons que  $P_n$  est vraie au rang n. Alors, puisque  $U_n < 2$ , nous sommes sûrs que  $U_n 3 \neq 0$ . Il est donc posible de calculer  $\frac{U_n 4}{U_n 2}$ , ce qui justifie l'existence de  $U_{n+1}$ . Par ailleurs :

$$\frac{U_n - 4}{U_n - 3} < 2 \Leftrightarrow U_n - 4 > 2(U_n - 3) \Leftrightarrow 2 > U_n$$

car  $U_n - 3 < 0$ . Ainsi  $U_{n+1} < 2$  et  $P_{n+1}$  est vraie.

- On a montré que P<sub>0</sub> est vraie et que ∀n ∈ N, P<sub>n</sub> ⇒ P<sub>n+1</sub>. Par le théorème de récurrence, la propriété est vraie pour tout entier n.
- (Q 2) Soit  $n \in \mathbb{N}$ . On calcule  $V_{n+1} V_n = \frac{1}{U_{n+1}-2} \frac{1}{U_n-2} = \frac{1}{\frac{U_n-4}{U_n-3}-2} \frac{1}{U_n-2} = \frac{\frac{U_n-3}{2-U_n} \frac{1}{U_n-2}}{\frac{U_n-3+1}{2-U_n}} = -1$ . Par définition, la suite  $(V_n)_{n \geq 0}$  est donc arithmétique de raison -1 et de premier terme  $V_0 = -1$ .
- (Q 3) Par propriété, on sait que  $\forall n \in \mathbb{N}, V_n = -1 n$ . Ainsi, pour tout entier n, on a :

$$U_n - 2 = \frac{1}{V_n} = \frac{-1}{n+1} \Leftrightarrow U_n = 2 - \frac{1}{n+1}$$

Par opération usuelle sur les limites, on en déduit que

$$\lim_{n \to +\infty} U_n = 2.$$

### Correction de l'exercice 3:

- (Q 1) Nous avons :  $3^{n+2} 4.3^{n+1} + 4.3^n = 3^n(9-12+4) = 3^n$ .
- (Q 2)  $v_{n+2}-4v_{n+1}+4v_n=0$ . Il s'agit donc d'une suite récurrente double dont la racine double du discriminant est 2. On en déduit :  $v_n=(an+b)2^n$ . Or  $v_0=0$  et  $v_1=-\frac{11}{4}$ . Ainsi : b=0 et  $a=-\frac{11}{8}$ , d'où  $v_n=-11.2^{n-3}$ .

(Q3) 
$$u_n = v_n + 3^n = \boxed{-11.2^{n-3} + 3^n}$$

Correction de l'exercice 5 :

- 1. La première inégalité est l'écriture de la définition de la convergence d'une suite vers 0, mais avec  $\frac{\varepsilon}{2}$ . La deuxième inégalité vient du fait que toute suite convergente est bornée.
- 2. D'après l'inégalité triangulaire,  $v_n \leq \frac{\sum\limits_{k=0}^n |u_k|}{n+1}$ . En utilisant Chasles et d'après 1, pour  $n \geq N_1+1$ ,  $\sum\limits_{k=0}^n |u_k| = \sum\limits_{k=0}^{N_1} |u_k| + \sum\limits_{k=N_1+1}^n |u_k| \leq (N_1+1)M + (n-N_1)\frac{\varepsilon}{2}$ . On en déduit :  $|v_n| \leq \frac{M(N_1+1)}{n+1} + \frac{\varepsilon(n-N_1)}{2(n+1)}. \text{ Puisque } n-N_1 \leq n \leq n+1, \text{ on en déduit } \frac{\varepsilon(n-N_1)}{2(n+1)} \leq \frac{\varepsilon}{2}. \text{ Par conséquent,}$

$$\forall n \ge N_1 + 1, \ |v_n| \le \frac{M(N_1 + 1)}{n + 1} + \frac{\varepsilon}{2}.$$

3. Puisque  $\lim_{n \to +\infty} \frac{M(N_1+1)}{n+1} = 0$ , il existe, par définition de la limite, un rang  $N_2$  tel que pour tout  $n \ge N_2$ ,  $\frac{M(N_1+1)}{n+1} \le \frac{\varepsilon}{2}$ . Alors, d'après la question précédente, pour tout  $n \ge \max(N_1+1,N_2)$ ,  $|v_n| \le \varepsilon$ . On en déduit que  $(v_n)$  converge vers 0 toujours par définition de la limite.

Correction de l'exercice 6 :

- (Q 1) Nous avons :  $z_{n+1} = \frac{1}{2}u_n \frac{1}{2}v_n + 2 + \frac{i}{2}u_n + \frac{i}{2}v_n i = \frac{1}{2}z_n + \frac{i}{2}(u_n + \frac{i}{2}v_n) = \frac{1+i}{2}z_n + 2 i$ . Il s'agit d'une suite arithmético-géométrique de point fixe  $\ell = \frac{2(2-i)}{1+i} = (2-i)(1-i) = 1 3i \text{ donc}:$   $z_n = a\left(\frac{1+i}{2}\right)^n + 1 3i \text{. Or } \left|\frac{1+i}{2}\right| = \frac{\sqrt{2}}{2}, \text{ donc est de module strictement inférieur à 1. On en déduit:}$   $\lim_{n \to +\infty} a\left(\frac{1+i}{2}\right)^n = 0, \text{ donc que } \boxed{(z_n) \text{ converge vers } 1 3i.}$
- (Q 2) Par définition de la limite d'une suite complexe, la partie réelle de  $z_n$  et la partie imaginaire convergent respectivement vers 1 et -3, c'est à dire :

 $(u_n)$  converge vers 1 et  $(v_n)$  converge vers -3.

#### Correction de l'exercice 8 :

La partie entière d'un nombre est un nombre entier relatif. Par définition de  $\mathbb{Q}$ , on en déduit que  $x_n$  est un rationnel pour tout entier n. De plus,

$$nx - 1 < \lfloor nx \rfloor \le nx \Rightarrow x - \frac{1}{n} < x_n \le x$$

Par le théorème de l'encadrement, on en déduit que  $\lim_{n \to +\infty} x_n$  =Correction de l'exercice 11 : x. Cela démontre que tout nombre réel est la limite d'une suite rationnelle.

#### Correction de l'exercice 9 :

- 1.  $w_{n+1} = v_{n+1} u_{n+1} = \frac{1}{4}(u_n + 3v_n) \frac{1}{3}(u_n + 3v_n)$  $2v_n$ ) =  $\frac{1}{12}w_n$ . On en déduit que  $(w_n)$  est géométrique de raison  $q = \frac{1}{12}$ . De plus |q| < 1 donc  $\lim_{n \to +\infty} w_n = 0.$
- 2.  $u_{n+1} u_n = \frac{2}{3}w_n = \frac{2}{3}\left(\frac{1}{12}\right)^n \times 11 \text{ car } w_0 = 11.$ Ainsi,  $\forall n \in \mathbb{N}, \ u_{n+1} u_n \geq 0 \text{ donc}$  $(u_n)$  est croissante.

$$v_{n+1}-v_n=-rac{1}{4}w_n=-rac{1}{4}\left(rac{1}{12}
ight)^n imes 11$$
 ce qui prouve que :  $\forall n\in\mathbb{N},\ v_{n+1}-v_n\leq 0$  donc

 $(v_n)$  est décroissante.

Puisque :  $\lim w_n = 0$  et en reprenant les résultats précédents, nous avons deux suites dont l'une est croissante l'autre est décroissante et dont la différence tend vers 0 . Ce sont donc des

suites adjacentes par définition et donc deux suites qui convergent vers une même limite  $\ell$  par propriété.

3.  $t_{n+1} = t_n$  et ce pour tout entier naturel n, ce qui prouve que  $(t_n)$  est constante. En particulier,  $\forall n \in$  $\mathbb{N}, t_n = t_0 = 99 \text{ donc}$ :  $\forall n \in \mathbb{N}, 3u_n + 8v_n = 99$ . En passant cette égalité à la limite (ce que l'on peut faire puisque  $(u_n)$  et  $(v_n)$ convergent), on en déduit la relation :  $11 \times \ell = 99 \Leftrightarrow$ 

#### Correction de l'exercice 10 :

Posons  $v_n=S_{2n}$ . Alors :  $v_{n+1}-v_n=S_{2n+2}-S_{2n}=\frac{1}{2n+2}-\frac{1}{2n+1}$ , ce qui est négatif puisque :  $\forall n\in\mathbb{N},\,\frac{1}{2n+2}<\infty$  $\frac{1}{2n+1}. \text{ Par conséquent, } (v_n) \text{ est décroissante.}$   $\text{Posons } w_n = S_{2n+1}. \text{ Alors } : w_{n+1} - w_n = S_{2n+3} - S_{2n+1} = -\frac{1}{2n+3} + \frac{1}{2n+2}, \text{ ce qui est positif puisque } :$   $\forall n \in \mathbb{N}, \ \frac{1}{2n+3} < \frac{1}{2n+2}. \text{ Par conséquent, } (w_n) \text{ est crois-}$ sante. Enfin,  $w_n - v_n = -\frac{1}{2n+1} \operatorname{donc} \lim_{n \to +\infty} (w_n - v_n) =$ 

Les points précédents assurent que les suites  $(v_n)$  et  $(w_n)$  sont adjacentes et donc par le théorème sur les suites adjacentes convergentes vers une même limite commune  $\ell$ . Les deux suites extraites  $(S_{2n})$  et  $(S_{2n+1})$  convergeant toutes deux vers une même limite  $\ell$ , on en conclut que  $(S_n)$  converge vers  $\ell$ .

- 1. On pose  $\mathcal{P}(n)$  "  $0 \leq u_n \leq 1$ " et on procède par récurrence pour démontrer le résultat :
  - $0 \le u_0 \le 1$  par hypothèse, d'où l'initialisation.
  - Si, pour un certain  $n \in \mathbb{N}$  fixé  $0 \le u_n \le 1$ , alors :  $0 \le u_n^2 \le 1$  et donc  $0 \le u_n + u_n^2 \le 2$ , ce qui entraîne  $0 \le \frac{u_n + u_n^2}{2} \le 1$ , et donc que :  $0 \le 1$  $u_{n+1} \leq 1$ . D'où l'hérédité.
  - Par le théorème de récurrence, la propriété est vraie pour tout entier n.

Soit  $n \in \mathbb{N}$ . Alors  $u_{n+1} - u_n = \frac{u_n(u_n - 1)}{2}$ . Or  $u_n \ge 0$  et  $u_n - 1 \le 0$  car  $u_n \le 1$  donc :  $u_{n+1} - u_n \le 0$ 0. Ceci étant vrai pour tout entier naturel n, on en déduit que  $(u_n)$  est décroissante. La suite  $(u_n)$  est décroissante et minorée par 0 donc par le théorème sur les suites monotones, elle converge vers un réel  $\ell \in [0; 1]$ . En utilisant les opérations élémentaires et le fait que  $(u_{n+1})$  converge vers l en tant que suite extraite de  $(u_n)$ , on obtient par passage à la limite dans  $u_{n+1} = \frac{1}{2}(u_n + u_n^2)$  que  $l = \frac{1}{2}(l + l^2) \Leftrightarrow l = 1$ 0 ou l=1. 0 et 1 appartiennent tous deux à l'intervalle [0; 1]. Pour finir, il nous reste à nous rappeler que  $(u_n)$  est décroissante, ce qui nous permet d' aboutir aux deux situations suivantes:

- $u_0 = 1$ , alors pour tout  $n \in \mathbb{N}$ ,  $u_n = 1$  donc la suite  $(u_n)$  est constante et converge vers 1.
- $0 \le u_0 < 1$ . Alors : pour tout entier naturel n,  $u_n \le u_0$ , donc par passage à la limite,  $\ell \le u_0 < 1$ . Nécessairement la suite  $(u_n)$  converge vers 0.

#### Correction de l'exercice 12:

déduisons:

- (Q 1) On pose :  $\mathcal{P}(n)$  : «  $u_n$  est définie et  $u_n > 0$  »et on procède par récurrence.
  - $u_1 = \sqrt{2 + u_0} = \sqrt{2}$  donc  $u_1$  existe et  $u_1 > 0$  ce qui prouve l'initialisation.
  - Si pour un certain n fixé,  $u_n$  existe et  $u_n > 0$ , alors  $2 + u_n > 0$  donc on peut considérer la racine de cette expression, ce qui prouve que  $u_{n+1}$ existe. De plus,  $2 + u_n > 0 \Rightarrow \sqrt{2 + u_n} > \sqrt{0}$ par stricte croissance de la fonction racine sur  $\mathbb{R}_+$ . Ceci prouve donc que  $u_{n+1} > 0$  ce qui finit de prouver l'hérédité.
- (Q 2) En utilisant l'expression conjuguée, nous obtenons  $u_{n+1}-2=\frac{2-u_n}{\sqrt{2+u_n}+2}, \text{donc}:$  $|u_{n+1}-2|=\frac{|u_n-2|}{\sqrt{2+u_n}+2}$ . Or  $\forall n \in \mathbb{N}, \sqrt{2+u_n}+$ 2 donc par passage à l'inverse,  $\frac{1}{\sqrt{2+u_n}+2} \leq \frac{1}{2}$ , puis par multiplication par  $|u_n-2|\geq 0$ , nous en

$$\forall n \in \mathbb{N}, |u_{n+1} - 2| \le \frac{1}{2}|u_n - 2|.$$

- (Q 3) On pose :  $\mathcal{P}(n) \ll |u_n 2| \leq \left(\frac{1}{2}\right)^{n-1}$  wet on procède par récurrence.
  - $|u_0 2| = 2 = \frac{1}{2}^{-1}$  ce qui prouve l'initialisation.
  - Si  $|u_n-2| \leq \left(\frac{1}{2}\right)^{n-1}$  pour un certain n fixé, alors :  $|u_{n+1}-2| \leq \frac{1}{2}|u_n-2| \leq \frac{1}{2}.\left(\frac{1}{2}\right)^{n-1}$  en utilisant successivement la question 2 et l'hypothèse de récurrence. Puisque :  $\frac{1}{2}.\left(\frac{1}{2}\right)^{n-1} = \left(\frac{1}{2}\right)^n$ , nous en déduisons :  $|u_{n+1}-2| \leq \left(\frac{1}{2}\right)^n$  ce qui prouve l'hérédité.
- (Q 4) Puisque :  $0 \le |u_n-2| \le \left(\frac{1}{2}\right)^{n-1}$  et puisque  $\lim_{n \to +\infty} \left(\frac{1}{2}\right)^n$  0, par théorème d'encadrement, la suite de terme général  $|u_n-2|$  converge vers 0. Or :

$$\lim_{n \to +\infty} |u_n - 2| = 0 \Leftrightarrow (u_n) \text{ converge vers } 2.$$

#### Correction de l'exercice 13:

Puisque  $\forall n \in \mathbb{N}, u_n \neq 0$ , nous pouvons poser :  $v_n = \frac{1}{u_n}$ . Alors :  $v_{n+2} - 4v_{n+1} + 8v_n = 0$ . Il s'agit donc d'une suite récurrente double de discriminant -16 et de racines complexes conjuguées :  $2 \pm 2i = 2\sqrt{2}e^{\pm i\pi/4}$ . On en déduit qu'il existe  $(a,b) \in \mathbb{R}^2$  tels que :

$$\forall n \in \mathbb{N}, v_n = 2^{3n/2} \left( a \cos\left(\frac{n\pi}{4}\right) + b \sin\left(\frac{n\pi}{4}\right) \right), d'où$$

$$\forall n \in \mathbb{N}, u_n = \frac{1}{2^{3n/2} \left( a \cos\left(\frac{n\pi}{4}\right) + b \sin\left(\frac{n\pi}{4}\right) \right)}.$$

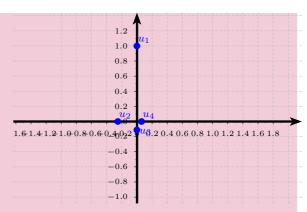
#### Correction de l'exercice 14:

Soit  $(u_n)_{n\geq 0}$  une suite d'entiers naturels qui converge vers 0. Alors :

$$\forall \varepsilon > 0, \exists n_0, \forall n \ge n_0, |u_n - 0| \le \varepsilon \Leftrightarrow \forall \varepsilon > 0, \exists n_0, \forall n \ge n_0, 0 \le \varepsilon$$

Prenons  $\varepsilon=1/2$  par exemple. Alors il existe un entier  $n_0$  tel que pour tout  $n\geq n_0$ , on a  $0\leq u_n\leq \frac{1}{2}$ . Or 0 est le seul entier de l'intervalle [0;1/2]. Ainsi, à partir du rang  $n_0$ , on a montré que les termes de la suite sont nuls. Cette suite est donc stationnaire.

Correction de l'exercice 16: 1. On sait que la suite de terme général  $i^n$  n'admet pas de limite. On peut représenter quelques points d'affixe les premiers termes de la suite de terme général  $u_n$  pour observer si elle a une limite.



Il semblerait qu'elle converge vers 0. On calcule donc le module :

$$|u_n| = \frac{|i^n|}{n^2} = \frac{1}{n^2} \to_{n \to +\infty} 0$$

Ainsi, par propriété,  $\lim_{n \to +\infty} u_n = 0$ .

2.  $v_n = \frac{n}{1+in}$ . On a une forme indéterminée. On factorise :

$$v_n = \frac{n}{n(1/n+i)} = \frac{1}{1/n+i} \to_{n \to +\infty} \frac{1}{i} = -i$$

par opération usuelle.

3.  $w_n=e^{\frac{3n+i}{n}}=e^{3+i/n}=e^3\times e^{i/n}.$  Or  $e^{i/n}=\cos(1/n)+i\sin(1/n)$  et ainsi  $\lim_{n\to+\infty}e^{i/n}=1.$  Donc par opération usuelle,  $\lim_{n\to+\infty}w_n=e^3.$ 

Correction de l'exercice 17:

Posons  $u_n=x_n+iy_n$  avec  $x_n\in\mathbb{R}$  et  $y_n\in\mathbb{R}$ . Alors :  $x_{n+1}+iy_{n+1}=\frac{1}{3}\left(2x_n+2iy_n-x_n+iy_n\right)$  ce qui donne en identifiant les parties réelles et imaginaires :  $x_{n+1}=\frac{1}{3}x_n$  et  $y_{n+1}=y_n$ . On en déduit :  $\forall n\in\mathbb{N},\ y_n=y_0$  et  $x_n=\frac{x_0}{3^n}$ . Il est clair que  $\lim_{n\to+\infty}x_n=0$  et  $\lim_{n\to+\infty}y_n=y_0$ , ce qui prouve que  $(z_n)$  converge vers  $\mathrm{Im}(z_0)$ .

Correction de l'exercice 18 : (a)  $u_n = \frac{n+(-1)^n}{n-(-1)^n}$ ; On a une FI. On factorise :

$$u_n = \frac{n(1 + (-1)^n/n)}{n(1 - (-1)^n/n)} = \frac{1 + (-1)^n/n}{1 - (-1)^n/n}$$

Or  $\lim_{n\to+\infty} (-1)^n/n=0$  par le théorème de l'encadrement. Donc par opérations usuelles,

$$\lim_{n \to +\infty} u_n = 1$$

(b)  $u_n = \frac{2^n + 3^n}{2^n - 3^n}$ ; On a une FI, on factorise:

$$u_n = \frac{3^n \left( (2/3)^n + 1 \right)}{3^n \left( (2/3)^n - 1 \right)} = \frac{(2/3)^n + 1}{(2/3)^n - 1}$$

Or  $\lim_{n\to+\infty} (2/3)^n = 0$  puisque  $((2/3)^n)_{n\geq 0}$  est une suite

géométrique de raison 2/3. Par opérations usuelles,

$$\lim_{n \to +\infty} u_n = -1 \ .$$

(c)  $u_n = \sqrt{n+1} - \sqrt{n}$ ;

On a une FI, on multiplie par la quantité conjuguée :

$$u_n = \frac{(\sqrt{n+1} - \sqrt{n})(\sqrt{n+1} + \sqrt{n})}{\sqrt{n+1} + \sqrt{n}} = \frac{1}{\sqrt{n+1} + \sqrt{n}}$$

Ainsi, par opérations usuelles;

$$\lim_{n \to +\infty} u_n = 0$$

(d)  $u_n = \frac{\sin n}{n^{\alpha}} (\alpha > 0);$ 

On sait que  $(\sin(n))_{n\geq 0}$  n'a pas de limite. On souhaite donc se débarrasser de cette quantité. On utilise que :

$$|\sin(n)| \le 1 \Rightarrow |\frac{\sin(n)}{n^{\alpha}}| \le \frac{1}{n^{\alpha}}$$

Or par limite usuelle, on sait que  $\lim_{n\to +\infty}1/n^{\alpha}=0$ . Par le théorème de l'encadrement, on en déduit que

$$\lim_{n \to +\infty} u_n = 0$$

(e)  $u_n = (\frac{1}{n})^{\frac{1}{\ln n}}$ ;

On n'a pas d'opération usuelle valable sur les suites du type  $(u_n)^{v_n}$ . On revient donc à la définition de ce nombre :

$$u_n = \exp\left(\frac{\ln(1/n)}{\ln(n)}\right) = \exp\left(-1\right)$$

C'est donc une suite constante et elle converge donc vers  $e^{-1}$ .

(f)  $u_n = n^2 + \sin(n)$ ;

On sait que  $(\sin(n))_{n\geq 0}$  n'a pas de limite. On souhaite donc se débarrasser de cette quantité. On utilise que :

$$-1 \le \sin(n) \le 1 \Rightarrow n^2 - 1 \le u_n \le n^2 + 1 \Rightarrow n^2 - 1 \le u_n$$

On sait que  $\lim_{n\to +\infty} n^2 - 1 = +\infty$ . Par le théorème de divergence par minoration, on en déduit que

$$\lim_{n \to +\infty} u_n = +\infty$$

(g)  $u_n = (-1)^n + n$ ;

On sait que  $((-1)^n)_{n\geq 0}$  n'a pas de limite. On souhaite donc se débarrasser de cette quantité. On utilise que :

$$-1 \le (-1)^n \le 1 \Rightarrow n-1 \le u_n \le n+1 \Rightarrow n-1 \le u_n$$

On sait que  $\lim_{n\to+\infty} n-1=+\infty$ . Par le théorème de divergence par minoration, on en déduit que

$$\lim_{n \to +\infty} u_n = +\infty$$

(h)  $u_n = \frac{n(-1)^n}{n^2+1}$ ;

On sait que  $(\sin(n))_{n\geq 0}$  n'a pas de limite. On souhaite donc se débarrasser de cette quantité. On utilise que :

$$-1 \le (-1)^n \le 1 \Rightarrow \frac{-n}{n^2 + 1} \le u_n \le \frac{n}{n^2 + 1}$$

On sait que  $\lim_{n\to+\infty}\frac{-n}{n^2+1}=\lim_{n\to+\infty}\frac{n}{n^2+1}=0$ . Par le théorème d'encadrement, on en déduit que

$$\lim_{n \to +\infty} u_n = 0$$

(i)  $u_n = n^{-\ln n}$ .

On n'a pas d'opération usuelle valable sur les suites du type  $(u_n)^{v_n}$ . On revient donc à la définition de ce nombre :

$$u_n = \exp(-\ln(n) \times \ln(n))$$

Par opérations usuelles, on en déduit que

$$\lim_{n \to +\infty} u_n = 0$$

Correction de l'exercice 20:

- (a) La suite de terme général  $(-1)^n$  pose problème. On prend  $u_{2n}=1+\frac{1}{2n}\to_{n\to+\infty} 1$  et  $u_{2n+1}=-1+\frac{1}{2n+1}\to_{n\to+\infty} -1$ . Les deux suites extraites convergent vers deux nombres différents. Par la propriété des suites extraites, on en déduit que la suite de terme général  $u_n$  ne converge pas.
- (b) De même, le cosinus pose problème. On prend par exemple,  $v_{16n}=\frac{1}{16n}+\cos(\frac{16n\pi}{8})=\frac{1}{16n}+1\to_{n\to+\infty}$  1. Puis,  $v_{16n+1}=\frac{1}{16n+1}+\cos(2n\pi+\frac{\pi}{8})\to_{n\to+\infty}$   $\cos(\pi/8)\neq 1$ . Par la propriété des suites extraites, on en déduit que la suite de terme général  $v_n$  ne converge pas.

#### Correction de l'exercice 21:

Si on arrive à montrer que les suites  $(x_{2n})$ ,  $(x_{2n+1})$  convergent vers le même nombre alors, par théorème, la suite de terme général  $x_n$  converge.

On note a la limite de  $(x_{2n})$ , b la limite de  $(x_{2n+1})$  et enfin c la limite de  $(x_{3n})$ .

On sait que  $(x_{3n})$  converge vers un réel c. Donc, la suite extraite  $(x_{3\times(2n)})$  converge vers c. Or la suite  $(x_{2\times3n})$  est une suite extraite de  $(x_{2n})$  et elle converge donc vers a. Par unicité de la limite, on a donc montré que a=c.

On sait que  $(x_{3n})$  converge vers un réel c. Donc, la suite extraite  $(x_{3(2n+1)})$  converge vers c. Or la suite  $(x_{6n+3} = x_{2\times(3n+1)+1})$  est une suite extraite de  $(x_{2n+1})$  et elle converge donc vers b. Par unicité de la limite, on a donc montré que b=c.

Finalement, a=b et par théorème, la suite de terme général  $x_n$  converge.

Correction de l'exercice 22:

- (Q 1) On note  $\mathcal{P}(n)$  : «  $u_n$  existe et  $1 \leq u_n \leq 2$  »et on procède par récurrence.
  - L'initialisation est vérifiée car  $u_0$  existe (égal à 1) et  $1 \le u_0 \le 2$ .
  - Pour la phase d'hérédité, si l'on suppose que  $u_n$  existe et  $1 \le u_n \le 2$  pour un certain n fixé, alors  $\frac{1}{u_n}$  a un sens puisque  $u_n \ne 0$  et  $1 \le u_n \le 2$  et donc  $\frac{1}{2} \le \frac{1}{u_n} \le 1$ . Par conséquent,  $u_{n+1}$  existe et  $\frac{3}{2} \le u_{n+1} \le 2$ . Puisque  $\frac{3}{2} \ge 1$ , nous prouvons l'hérédité.

SINON ON APPLIQUE LA FONCTION f A CETTE INÉGALITÉ en déterminant ses variations sur le segment [1; 2].

- Finalement, par récurrence, pour tout  $n \in \mathbb{N}$   $u_n$  a un sens et  $1 \le u_n \le 2$ .
- (Q 2) f est dérivable sur  $I=[1;\ 2]$  par opérations usuelles et pour tout  $x\in I$ ,  $f'(x)=-\frac{1}{x^2}$ . On en déduit que pour tout  $x\in I$ , f'(x)<0, donc que f est strictement décroissante. Alors

$$1 \le x < y \le 2 \Rightarrow 2 \ge f(x) > f(y) \ge 3/2$$

par stricte décroissance et donc, puisque f est décroissante sur [1,2],

$$f(f(x)) < f(f(y))$$

. Par conséquent,  $g=f\circ f$  est une fonction strictement croissante.

- (Q 3) Pour tout entier naturel  $n, u_{n+2} = f(u_{n+1}) = f(f(u_n)) = g(u_n)$ . Si l'on pose :  $v_n = u_{2n}$ , alors  $v_{n+1} = u_{2n+2} = g(u_{2n}) = g(v_n)$ . De même avec  $w_n = u_{2n+1}$ .

  Nous avons :  $v_0 = 1$ ,  $w_0 = 2$ ,  $v_1 = \frac{3}{2}$ ,  $w_1 = \frac{5}{3}$ .

  Nous avons donc  $v_0 \le v_1$ . En appliquant g à cette inégalité on aura alors, par croissance de  $g: g(v_0) \le g(v_1) \Leftrightarrow v_1 \le v_2$  etc.. On montre alors par récurrence que  $(v_n)$  est croissante. Posons, pour  $n \in \mathbb{N}$ , la propriété :  $\mathcal{P}(n)$  «  $v_n \le v_{n+1}$  ».
  - $v_0 \le v_1$ , d'où l'initialisation.
  - Si  $v_n \leq v_{n+1}$  pour un certain n fixé, alors par stricte croissance de g,  $g(v_n) \leq g(v_{n+1})$  c'est à dire  $v_{n+1} \leq v_{n+2}$ , d'où l'hérédité.

Par le théorème de récurrence,  $\mathcal{P}_n$  est vraie pour tout entier n.

On montre de la même façon que  $(w_n)$  est strictement décroissante  $(w_1 < w_0)$ . Au final, on sait que

 $(v_n)$  est croissante

 $(v_n)$  est majorée par 2.

Donc par le théorème de la limite monotone, elle converge vers  $\ell \in [1; 2]$ . De même  $(w_n)$  est décroissante et minorée par 1 donc par le théorème de la limite monotone, elle converge vers  $\ell' \in [1; 2]$ .

Calculons ces limites. On sait que

$$v_{n+1} = 1 + \frac{1}{1 + \frac{1}{v_n}}, \ w_{n+1} = 1 + \frac{1}{1 + \frac{1}{v_n}}$$

Par opérations élémentaires, on sait que  $\left(1+\frac{1}{1+\frac{1}{\nu_n}}\right)$  converge vers  $1+\frac{1}{1+\frac{1}{l}}$  et également que  $\left(1+\frac{1}{1+\frac{1}{\nu_n}}\right)$  converge vers  $1+\frac{1}{1+\frac{1}{l'}}$ . En tant que suites extraites, les suites  $(v_{n+1})$  et  $(w_{n+1})$  convergent vers l et l' respectivement. Finalement, par passage à la limite dans les égalités,

$$l = 1 + \frac{1}{1 + \frac{1}{l}}, l' = 1 + \frac{1}{1 + \frac{1}{l'}}$$

Or  $x=1+\frac{1}{1+\frac{1}{x}}=\frac{2x+1}{x+1}$  et  $x\in[1;2]\Leftrightarrow x=\frac{1+\sqrt{5}}{2}$ . Par conséquent,

$$\ell = \ell' = \frac{1 + \sqrt{5}}{2}.$$

(Q 4)  $(u_{2n})$  et  $(u_{2n+1})$  convergent toutes deux vers le même réel, et par le théorème des suites extraites, on en déduit que :

 $(u_n)$  converge vers cette limite commune qui est 0.

Correction de l'exercice 23:

- Bien évidemment, par récurrence élémentaire, nous avons  $u_n \ge 0$  et  $v_n \ge 0$  pour tout entier naturel n.
- (a) Initialisation.  $v_0 \le u_0$ 
  - (b) Hérédité. Supposons que  $v_n \leq u_n$  à un rang n. Alors on sait que  $\forall (a;b) \in \mathbb{R}^2$ ,  $\sqrt{ab} \leq \frac{1}{2} \left( \sqrt{a^2} + \sqrt{b^2} \right)$ . Donc,  $\sqrt{u_n v_n} \leq \frac{1}{2} \left( \sqrt{u_n}^2 + \sqrt{v_n}^2 \right) \Leftrightarrow v_{n+1} \leq u_{n+1}$ .
  - (c) Par le théorème de récurrence, on a donc montré que  $\forall n \in \mathbb{N}, v_n \leq u_n$ .
- De cette inégalité, on en déduit :  $\frac{u_n + v_n}{2} \le \frac{u_n + u_n}{2} \le u_n$  ce qui prouve que  $u_{n+1} \le u_n$  et ce pour tout  $n \in \mathbb{N}$ . La suite  $(u_n)$  est donc décroissante.
- Nous en déduisons également que :  $\sqrt{u_n v_n} \ge \sqrt{v_n v_n} \ge v_n$  ce qui prouve que  $v_{n+1} \ge v_n$  et ce pour tout  $n \in \mathbb{N}$ . La suite  $(v_n)$  est donc croissante.
- Ainsi,  $v_n \le u_n \le u_0$  donc  $(v_n)$  est croissante et majorée donc converge vers  $\ell_1$ . De même  $u_n \ge v_n \ge v_0$  donc  $(u_n)$  est décroissante et minorée donc converge vers  $\ell_2$ .
- Enfin, en passant  $u_{n+1}=\frac{u_n+v_n}{2}$  à la limite, et puisque  $\lim_{n\to +\infty}u_{n+1}=\ell_2 \text{ (en tant que suite extraite de }(u_n)\text{),}$  nous en déduisons :  $\ell_2=\frac{\ell_1+\ell_2}{2}\Leftrightarrow \ell_1=\ell_2.$
- Le point précédent assure que  $\lim_{n\to +\infty}(v_n-u_n)=0$  par opérations usuelles. D'autre part,  $(u_n)$  est croissante et

 $(v_n)$  est décroissante donc ces deux suites sont adjacentes.

#### Correction de l'exercice 24:

(Q 1) On montre par récurrence que pour tout entier naturel n,  $u_n > 0$ . En effet :  $u_0 = 1$  donc  $u_0 > 0$  ce qui prouve l'initialisation. D'autre part, si  $u_n > 0$  alors  $u_{n+1} = u_n e^{-u_n} > 0$  ce qui prouve l'hérédité. D'où le résultat par récurrence.

Ainsi,  $\forall n \in \mathbb{N}$ ,  $\frac{u_{n+1}}{u_n} = e^{-u_n}$  et  $e^{-u_n} \le 1$  puisque  $u_n > 0$ . Ainsi, pour tout entier n, on a  $u_{n+1} \le u_n$ . Donc  $(u_n)$  est décroissante.

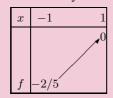
- (Q 2) La suite  $(u_n)$  est décroissante et minorée par 0. Par le théorème des suites monotones, cette suite  $(u_n)$  converge vers un réel  $l \geq 0$ . Donc la suite  $(u_{n+1})$  converge également vers l car c'est une suite extraite de  $(u_n)$ . Donc en passant l'égalité :  $u_{n+1} = u_n e^{-u_n}$  à la limite, on en déduit que  $\ell = \ell e^{-\ell} \Leftrightarrow \ell = 0$ . On a montré que  $(u_n)$  converge vers 0.
- (Q 3) Nous avons  $\frac{u_{n+1}}{u_n}=e^{-u_n}$  donc en faisant le produit de ces expressions, nous avons :  $\prod_{k=0}^n \frac{u_{k+1}}{u_k}=\sum_{k=0}^n \frac{u_{k+1}}{u_k}$

$$e^{-\sum\limits_{k=0}^nu_k}$$
 . Or par télescopage,  $\prod\limits_{k=0}^n\frac{u_{k+1}}{u_k}=\frac{u_{n+1}}{u_0}$  , d'où le résultat.

Finalement :  $S_n = -\ln\left(\frac{u_n}{u_0}\right)$  et donc par opérations usuelles  $\lim_{n\to+\infty}S_n=+\infty$ .

#### Correction de l'exercice 25 :

(Q 1) • f est polynômiale donc dérivable sur  $\mathbb R$  et donc sur  $[-1;\ 1]$ . De plus  $\forall x \in \mathbb R,\ f'(x) = \frac{3x^2}{5}$ . D'où le tableau de variations de f:



Ainsi,  $f([-1;1]) = [-0,4;0] \subset [-1;1]$ .

- Notons  $\mathcal{P}(n)$ : «  $u_n \in [-1; 1]$  »et procédons par récurrence pour montrer que ceci est vrai tout  $n \in \mathbb{N}$ . Puisque  $u_0 = 0$ , nous avons bien  $u_0 \in [-1; 1]$  ce qui prouve l'initialisation. D'autre part, si l'on suppose que  $u_n \in [-1; 1]$  pour un certain  $n \in \mathbb{N}$  fixé, alors :  $f(u_n) \in [-1; 1]$  d'après le point cidessus. Or,  $f(u_n) = u_{n+1}$  donc :  $u_{n+1} \in [-1; 1]$  ce qui prouve l'hérédité, et donc le résultat par récurrence.
- (Q 2) Précédemment, nous avons montré que la fonction était croissante. De plus,  $u_0=0; u_1=-1/5$ . Ainsi,  $u_1\leq u_0$ , donc en appliquant f croissante, il

- vient :  $f(u_1) \le f(u_0) \Leftrightarrow u_2 \le u_1$  etc.. Elle semble donc décroissante, mais pour le montrer, rien ne vaut une récurrence!
- Notons  $\mathcal{P}(n)$ : «  $u_{n+1} \leq u_n$  »et procédons par récurrence pour montrer que ceci est vrai tout  $n \in \mathbb{N}$ . Nous avons  $u_1 = -\frac{1}{5}$  donc  $u_1 \leq u_0$ , ce qui prouve l'initialisation. D'autre part, si  $u_{n+1} \leq u_n$  et puisque  $u_n \in [-1;\ 1]$ ,  $u_{n+1} \in [-1;\ 1]$ , nous avons :  $f(u_n) \leq f(u_{n+1})$  en vertu de la croissance de f sur  $[-1;\ 1]$ . Or,  $f(u_n) = u_{n+1}$  et  $f(u_{n+1}) = u_{n+2}$ , donc :  $u_{n+2} \leq u_{n+1}$  ce qui prouve l'hérédité, et donc le résultat par récurrence.
- (Q 3)  $(u_n)$  est décroissante et minorée par -1 donc par le théorème sur les suites monotones, elle converge vers un réel  $\ell \in [-1; \ 0]$  (puisque  $\forall n \in \mathbb{N}, -1 \le u_n \le u_0$ ). D'autre part, en passant l'égalité :  $u_{n+1} = \frac{1}{5}(u_n^3 1)$  à la limite  $((u_{n+1})$  converge vers  $\ell$  en tant que suite extraite, et par opérations élémentaires,  $\left(\frac{1}{5}(u_n^3 1)\right)$  converge vers  $\frac{1}{5}(\ell^3 1)$ , on en déduit que  $f(\ell) = \ell$ .
- (Q 4) On estime :  $|f(u_n) f(\ell)| = \frac{1}{5}|u_n^3 \ell^3| = \frac{1}{5}|u_n \ell||u_n^2 + \ell u_n + \ell^2|$  (identité remarquable). Or, d'après l'inégalité triangulaire et puisque  $|\ell u_n| \le 1$ ,  $|\ell^2| \le 1$ ,  $|u_n^2| \le 1$ , nous avons :  $|u_n^2 + \ell u_n + \ell^2| \le |u_n^2| + |\ell u_n| + |\ell^2| \le 3$ . Nous en déduisons donc que :  $|f(u_n) f(\ell) \le \frac{3}{5}|u_n \ell| \Leftrightarrow |u_{n+1} \ell| \le \frac{3}{5}|u_n \ell|$  car  $f(\ell) = \ell$  et  $f(u_n) = u_{n+1}$ .
  - Notons  $\mathcal{P}(n)$ : « $|u_n-\ell| \leq \left(\frac{3}{5}\right)^n$  »et procédons par récurrence pour montrer que ceci est vrai tout  $n \in \mathbb{N}$ . Nous avons  $|u_0-\ell|=|\ell| \leq 1$  car  $u_0=0$  et  $\ell \in [-1;\ 0]$ . Or  $\left(\frac{3}{5}\right)^0=1$  ce qui prouve l'initialisation. Supposons maintenant :  $|u_n-\ell| \leq \left(\frac{3}{5}\right)^n$  pour un certain  $n \in \mathbb{N}$  fixé. Alors, d'après le point précédent,  $|u_{n+1}-\ell| \leq \frac{3}{5}|u_n-\ell|$ . Or, par hypothèse de récurrence,  $|u_n-\ell| \leq \left(\frac{3}{5}\right)^n$  donc :  $\frac{3}{5}|u_n-\ell| \leq \left(\frac{3}{5}\right)^{n+1}$ . Ainsi,  $|u_{n+1}-\ell| \leq \left(\frac{3}{5}\right)^{n+1}$  ce qui prouve l'hérédité et donc le résultat par récurrence.
- (Q 5) On cherche  $n_0 \in \mathbb{N}$  pour lequel :  $|u_{n_0} \ell| \le 10^{-2}$ . Or d'après l'inégalité précédente,  $|u_{n_0} \ell| \le \left(\frac{3}{5}\right)^{n_0}$ .

  Il suffit donc de chercher  $n_0 \in \mathbb{N}$  tel que  $\left(\frac{3}{5}\right)^{n_0} \le 10^{-2}$  pour avoir  $|u_{n_0} \ell| \le 10^{-2}$ . Or en passant l'inégalité  $\left(\frac{3}{5}\right)^{n_0} \le 10^{-2}$  au logarithme nous avons :  $n_0 \ln \left(\frac{3}{5}\right) \le -2 \ln(10) \Leftrightarrow n_0 \ge \frac{2 \ln(10)}{\ln \left(\frac{5}{3}\right)} \operatorname{car} \ln \left(\frac{3}{5}\right) = \frac{2 \ln(10)}{\ln \left(\frac{5}{3}\right)}$ 
  - $-\ln\left(\frac{5}{3}\right) < 0$ . Une valeur approchée de  $\frac{2\ln(10)}{\ln\left(\frac{5}{3}\right)}$

étant 9.0... on en déduit qu'il suffit de choisir  $n_0 \ge$ 

10 afin d'obtenir  $u_{n_0}$  pour approximation de  $\ell$  à  $10^{-2}$  près. Enfin :  $u_{10} \approx -0.2$ .

#### Correction de l'exercice 26:

(Q 1) Par opérations élémentaires, f est dérivable sur  $I=[0;\ 1]$  et  $f'(x)=3(x^2-1)$ . Par conséquent, f est strictement décroissante sur I donc induit une bijection de I vers f(I). Or,  $f(I)=[f(1);\ f(0)]$  car f est continue et décroissante, donc  $f(I)=[0;\ 1]$ . Il ne nous reste plus qu'à constater que  $\forall n\in\mathbb{N}^*$ ,  $\frac{1}{n}\in f(I)$ , ce qui nous assure, par bijectivité, l'existence et l'unicité d'un antécédent de 1/n que l'on note  $x_n$ .



- (Q 2) Puisque  $\frac{1}{n+1} \leq \frac{1}{n}$ , nous avons :  $f(x_{n+1}) \leq f(x_n) \Leftrightarrow x_{n+1} \geq x_n$  car f est strictement décroissante. Ceci étant vrai pour tout entier naturel n, on en déduit que la suite  $(x_n)$  est croissante. Puisque  $\forall n \in I$  nous savons que  $(x_n)$  est majorée par 1.
- (Q 3)  $(x_n)$  est croissante et majorée donc par le théorème des suites monotones, cette suite converge vers  $\ell$ . De plus  $\forall n \in \mathbb{N}^*, 0 \leq x_n \leq 1$  donc par passage à la limite dans l'inégalité,  $0 \leq \ell \leq 1$ .
- (Q 4) Puisque pour tout  $n \in \mathbb{N}^*$ ,  $f(x_n) = \frac{1}{n}$  et par opérations élémentaires que  $x_n^3 3x_n + 1 \to l^3 3l + 1$ , en passant à la limite nous obtenons :  $f(\ell) = 0$ .  $\ell$  est donc un zéro de la fonction f.

#### Correction de l'exercice 27:

- (Q 1) La suite  $(u_n)$  est croissante à partir d'un certain rang :  $\exists N \in \mathbb{N}, \forall n \geq N, u_n \leq u_{n+1}.$
- (Q 2) La suite  $(u_n)$  n'est pas croissante :  $\exists n \in \mathbb{N}, u_n > u_{n+1}$ .
- (Q 3) La suite  $(u_n)$  ne converge pas vers  $0 : \exists \varepsilon > 0; \forall n_0 \in \mathbb{N}, \exists n \geq n_0, |u_n 0| > \varepsilon$ .